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ABSTRACT

The transport coefficients of a gas of loaded spheres,
that is, spheres in which the ce&ter of mass does not coincide
with the geometrical center are considered. The amount by
which the center of mass is displaced from the center of the
sphere is denoted by 8 and the diameter of the sphere is O .
The scattering amplitude and cross section are found as power
series in S/QT ; the coefficients of the zero, first, and
second power of SyéT are obtained. Using these results, the
quantum mechanical expressions for the relagation time,
coefficient of shear viscosity, and coefficient of thermal
conductivity are also obtained explicitly to second order in 8//CT.
P These quantities are then evaluated, numerically, in the
limit that Planck's constant approaches zero. The results
are found to agree with results obtained by purely classical

methods.
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CHAPTER T

INTRODUCTION

Statistical mechanics is that field of physics which
attempts to predict the properties and behavior of an aggregate
of a large number of particles, when the laws governing the
interaction of the constituent particles are known; This
fiedd is divided into two branches =-- equilibrium statistical
mechanics, by means of which such properties of a substance
at equilibrium as the energy, heat capacity, and equation of
state are determined; and non-equilibrium statistical mechanics,
which has as its central problem the determination of the
transport properties of systems, usually gases.

Although speculations on the atomic structure of matter
date back to the ancient Greeks, a mathematically rigorous
attack upon the problems of the kinetic theory of gases was
not made until the middle of the nineteenth century. J. C.
Maxwell1 in 1866 derived the equations of change for a
non=~uniform gas; L. Boltzmann2 in 1872 established his
H-theorem, and published the integro-differential equation
which bears his name., Atteﬁpts to solve this equation met
with small success until 1916-1917 when S. Chapman3 and
D. Enskog4 independently published their solutions of
Boltzmann's equation. An extensive discussion of this

solution is given by Chapman and Cowlings, and by



; ~ : R & . .
Hirschfelder, Curtiss, zn4 3ird . This sclutlion, and the

[n1)

LE, £ - the following assumptions:

Boltzmann equaticn 1ts

kY

1. Classical me-hanics iz welld to describe mclecular
interactions.

2. The gas is sufficiertiy

!
[m%
e
et
—t

¢ that three body
colligicrs mav be ignored.

3. The molecules have = internzl structure; they are
point particles surrounded by zrherically symmetric fields
of force.

Research in kinetic thsor sicce the time of Chapman and
Enskog has been principally 2irected towgrd the removal of
these restrictions.

Successful attempts to introduce quantum mechanics intoe
kinetic theory were firet made by %, Uehling and G. Uhlenbeck.7
They presented a moditied ferm of the boltzmann equation in

which both statisticz effect

]

, srising from the Pauli exclusion
principle, and diffraction effects, arising from the wave
nature of matter, are teken intc account. Quantum mechanically
it is impossible to say that a particle with a given energy

and angular momentum will be scattered through a definite

angle upon collizion with ancther particle. This results in
the classical cross zecticn being replaced by its quantum
analog in the Boltzmann coliisicn integral. An extensive

discussion of these wattecs is given by Hirschfelder, Curtiss,




.48 . . . 9
and Bird , and by Mori, Cppenneim, end Ress .

Attempts to extend the treatment to dense gases were first

10 .z . yan. ‘ ‘s .

made by Enskog = himself, whe in 192¢ formulated a modification
of the Boltzmann equation for a demse gas of rigid spheres.
Many contributions along this 1line hsve been made by subsequent
workers.

The kinetic theory of molecules with internal degrees of
freedom was considered from the mean free path approach by

11,12 ; . z
J. Jeans . He derived an expression for the rate of
equilibration of rotational and translational kinetic energy
for a gas of locaded spheres, thet is, spheres in which the
center of mass is slightly displaced from the geometrical
center. The first successful attemot to apply the Chapman-
Enskog method to a molecule with inrternal degrees of freedom
, 13 e P
was made by Pidduck ™ ™, who determined the transport coefficients
for a gas of perfectly rough spheres. A more exact treatment
of the loaded sphere has been given in a series of two papers
i4 ey . 15
by Dahler and Sather ', and Sandler and Dahler ™, and of the
- s ... 16 .
rough sphere by Condiff, Lu, 2nd Dahier ~. An extensive-
treatment of the kinetic theory of smooth rigid ovaloids has
. L 17 . . ,

been given by Curtiss™ . He derived z Beltzmann equation
appropriate to these molecules, and gave a solution in terms
of certain integral expressions. These were then evaluated

for the special case of the srherocylinder, that is, a



cylinder with hemispherical capsls. Kagan and Afanas'ev1
pointed out that terms in the expancsion of the perturbation
function arising from ccupling between the linear and angular
velocities were ignored in this treatment. The effect of these
added terms was comnsidered in the work on the rough sphere and
loaded sphere mentioned sbove.

The work thus far menticned has dealt with the removal
of some one of the restrictive assumptions. In this thesis,
however, we deal with a quantum mechanical system of molecules
with internal degrees of freedom. In the following section we

present certain results pertiment to this work.

Section 1.1 The Transport Coefficients of & Quantum Gas

with Internai Degrees of Freedom

Expressions for the transport ccefficients of a gas with

internal states based upon quantum mechanics were first

derived by Wang Chang, Uhlembeck, and de Boer20’21. They

introduce a distribution functicn ‘F‘:<_)l)_u;“6] 5, which is a
function of the position, velocity, time, aud quantum number i
specifying the interﬁal state of the molecule. The number of
molecules with internalvstate specified by the quantum numberii
which at time © 1lie in an element dg,o(,p_’ about ﬂ,_,z
is ‘F‘; (&’u;f)d&dr The Boltzmann equation which they

then write for '}C(-’ {4}_—1)-3 t) is
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(1.1-1)

— KR

The quantity ]*67

scattering ot particles in states (, and ? with relative

[? % y)) is the cross section for the

velocity % to states /¢ and £ with relative veloc1ty%_
The angles and (-IP are the polar angles of 9._ with
respect to % . The primes on the distribution functions
indicate that they are functions of post-collision velocities.
Wang Chang, Uhlenbeck, and de Boer solve this equation in a
manner similar to the classic Chapman-Enskog method. The
results which they obtain for the transport coefficients are
given in Chapter VI of this thesis. This quantum mechanical
treatment of molecules with internal structure has been
generalized to the treatment of mixtures by Sniderzz.

The treatment of this problem by Wang Chang, Uhlenbeck,
and de Boer is not completely satisfactory, however, since
the translational motion of the molecules is treated classically,
and the internal states are assumed to be non-degenerate.
Also, the Boltzmann equation with which they begin, Eq. 1.1-1,

is not obtained in a rigorous derivation.




More rigorous derivatioms of the 3oltzmann equation for a

quantum gas with internal degrees of freedom were given

B

[ ]

| 23 eqen N
independently by Waldmaun ~ &ard Suider . Saider's derivation

begins with the quantum analcg of the Licuville equation, and
makes use of the formal scattering thecry of Lippmann and
Schwinger. In a recent paper McCourt and Snider25 have solved
this equation to cbtain the ccefficient of thermal conductivity
for a gas with rotational degrees ¢f freedom. For a gas in
which the local angular momentum density is zerc, their results
are essentially the same as thoge c¢i Wang Chang, Uhlenbeck, and
de Boer, except that added terms, correspcnding to those
discussed by Kagan and Afanss'ev, are inciuded. Except for
these added terms, the cnly difference is that the cross
section introduced by Wang Cheng, Uhlenbeck, and de Boer is
replaced by the true cross section, averaged over the degenerate
internal states.

Snider22 obtained expressions for the collision cross
section of rigid spheres being scattered from rigid spheroids
of small eccentricity. This led to an expression for the
coefficient of diffusion which was evaluated explicitly in the
low temperature region where quantum effects are large. 1In
this thesis we treat the mcdel of the lcaded sphere. Since
their centers of mass do not coincide with their geometrical

centers, loaded spheres wobble during their motion. Upon




collision they can exchange translational and rotational kinetic
energy. It is for this reason that the model is of interest.
Our goal is to use the formulas of Wang Chang, Uhlenbeck, and

de Boer, as interpreted by McCourt and Snider (meglecting the
added terms of Kagan and Afanas'ev), to obtain expressions for
the transport coefficients for a gas of loaded spheres. In
order to accomplish this, we must first obtain an expression

for the collision cross section. This we do using the results

of Gioumousis and Curtiss on the scattering of diatomic molecules.

Section 1.2 The Scattering of Diatomic Molecules

Let us first consider a beam of point particles, moving
in the positive =z direction, being scattered by a center of
force. If the incoming particles all have momentum .ﬁz ﬁﬁ s

the asymptotic form of the wavefunction is

' v(j}fg/ cHn - (L.2-1)
.y
e T ) e :
Here éi is the propagation vector, and the quantity 4¥¥%yv
is called the scattering amplitude. By using this wavefunction
to calculate the current density far away from the scattering
center, it can be shown that the probability that a given

incident particle will be scattered into a unit solid angle

n-
about I};Lf is equal to |¥[&J¢)| . Hence we define the




scattering cross sectionI ('&)l)p) by the equation

I(&)gp) = l.,('(ﬂ;?), , (1.2-2)

In order to treat the collision of loaded spheres we
need the generalization of the above results_to the case where
the molecules have internal degrees of freedom. In a series
of three papers Gioumousis and Curti5526-28 have developed an
extensive treatment of the theory of diatomic molecular
collisions. This theory is appropriate to the loaded sphere
case, since a loaded sphere may be imagined as a diatomic
molecule with a rigid spherical potential surrounding it.

The internal state of a diatomic molecule is specified
by giving two quantum numbers--,e_, which specifies the energy,
and n , which specifies the z component of the angplar
momentum. The molecules are considered as rigid rotators,
so that no vibrational degree of freedom is preéent. The
energy E:B corresponding to the quantum number J? is
given by

42 0(0+))
E,= :

2rKT (1.2-3)

where [1 is the moment of inertia about an axis through




the center of mass perpendicular to the symmetry axis, K .is.
Boltzmann's constant, and T  is the absolute temperature.

let us consider two such molecules, molecule (U with -
internal quantum numbers £ ana M , and molecu.le /g’ s
witvh internal quantum numbers ,e’& and M’e'. The Hamiltonian W

for this system is given by

4 9 9 Q y) (1.2-4)
W= —Q; ’95.92 +WM*%'M7‘ V’

where JU is the vector from the center of mass of molecule }
to that of @ , /Lb is the reduced mass of the pair,

o £ . . .
"74 , and Wuwb are the internal Hamiltonians for molecules
(0% and ./g* , and V is the intermolecular potential.

The term referring to the motion of the center of mass of the

system as a whole has been removed from the Hamiltonian.
: e . i o
Let S . Q’(ﬁ [lpq) be an eigenfunction of WM
_Q)Q'm J
corresponding to internal energy ELQ’ , that is,

W:a‘ 5;1"’,,“/5?%‘1): E;m \S;qm“ (?9?¥)Q), (1f2,'5)

Then, as is shown by Gioumousis and Curtiss, the asymptotic

form of the wavefunction, corresponding to the molecules

having initial relative momentum ﬁ, = 7'2, }_‘l_QE& , and
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. ’ . . 3 v .—Q ﬁm
initial internal states specified by quantum numbers & m

J
-
and £ , m&,is

‘ ‘ _— - ')(o
+ Z Flzmoetm? 2 tmtin e’ et 2

2°%m%e8m £

X’S;e,,,q/&f v°) xgxmz. (ﬁféﬂ) ; (1.2-6)

The wave number }FD-Q,Q'B— is given by the equation of conservation

of energy

4 Ws IADIAY (L.2-7)
—q 2% . 2-
h ot + E—Q-I-EE-" —— +£QQ1"£:Q" ’

Then, corresponding to Eq. 1.2-2 for point particles, the

~4_4

. . =¢ -
cross section for scattering from states @ r~,,° L m to

Q
states £ rn"b@‘m‘* is given by

2
- H,e SN
T (EQ me L rTo&«@ me mi‘) —=* f #@Qﬁ"}’&r)—;f,eomﬁﬂ‘m‘)"

-~

2

(1.2-8)




A rigb;ous treatme nt chows that the scattering amplitude
and the cross secticn are, in general, functions of both the
incoming direction 7F' and the outgoing direction /? .. This
' 'is due to the degenmeracy of the internal states, and the
necessity of choosing a direction fixed in space for the
quantization of these states. Gioumousis and Curtiss expand

this cross section in an infinite series:

T (Tlz*m~2%%" 2~m*etm*/R)

Y T8 me B 5% A2y g L0 B )
. ?\35\3/40:

Ag 2
> D 3 ( 7—)0)’_//.7 D 9(/\2)0/4,9 . (1.2-9)

The quantities [)51(/Z)pjn appearing in this expression

are the representation coefficients of the three dimensional
rotation group, and /Q is a matrix which specifies a
direction in space. The manner.in which a matrix is associated
Witﬁ a direc;ion in space will be explained in detail in
Chapter II for the special case of the loaded sphere.

An explicit expression for the coefficient

—

4 (quﬁq’,é"&r?o&//’lg%/uy /,Qom Q/Blml)appearins in Eq- 1.2-9

11
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has been given by Gioumousis and Curtiss. It contains several
S Bq‘elr

Wigner, or Clebsch-Gordan,coefficients,
£ m8im

4 , some

properties of which are given in Appendix I. It also contains

a quantity 'F[,Eqﬁg‘yéﬁ L 2%%2 9\) ; it is this quantity

which is determined for any particular molecular model before

the cross section itself is evaluated. We shall refer to
')C[ZQ,E Lj 2L 2"23/@ ’}\) as the scattering amplitude;

this is in a sense a misnomer, since the real scattering

amplitude is the quantity F(j"m“‘_,@zﬁﬁﬁqmq,@&/’hg’)

of Eq. 1.2-6. In order to abbreviate the notation the symbol 4ha

is introduced to stand for the four summation indices £°,QL1A .

The scattering amplitude may then be written simply as 7C(¢-; Lfl-)

For collisions of two rigid bodies the scattering

ampiitude 4T(%;l.fl) is found in the following way.

The wavefunction for the system corresponding to configurations

in which the two bodies do not overlap can be written down;

A function F(SQ, SL) , called the distance of closest

approach function, is now introduced. It is defined to be

the distance between the centers of mass of the molecules

when molecule O. with orientation é;CL touches molecule &
N S . . .y

with orientation . Since the bodies are rigid the

wavefunction must be zero for a configuration of the two

bodies in which they overlap, and hence must, by continuity,
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be zero for any configuration in which they just touch. It
is shown by Gioumousis and Curtiss that this leads to the

following boundary condition:

2% A0

o=0 Rz (Rp (830 FgLpIR, (}f}o(S‘fS‘))v
X Sz%:%:,o_ SLit D’QQ(SQ)OA, 024{53 oT-24,
(1;2-10)

where 7/11 * and /KQ‘ are the spherical Bessel and Hankel
.func’tions; e equals )’PBQQL , and W equals HIQI.& .
If the distance of closest approach function is known,
the above equation may in principle be solved for f{fzi%‘) .
:: Then, the coefficients in the expansion of the cross section

may be evaluated by means of the following formu1a27
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_ ¥ (25%)(25%)
I(EQEQ’ZLEI}MM"/&J’Q”& = ((Qj°ft;)((92€ft;

2 ey erotern) 8 s

Z2aaz’e’
AL 2’2 22 072 7ot
X("/)mm) ‘ Sc’n?/3749-5 \?cm/us-m L’m/,(g-fsnho jsq,;ﬂ'
gzt 2004 2% 4 a7’ aa’
X Sifr;q,;ﬂr S;,,,a,.nz, S;/momL 200 Saqoo
i’ AL’

X Nagmops, Mgy T Ny pg=rr, 1 My~ M f&d}%aé’ei"ﬁpﬂ)

~ f/z°5*5° 1’ Lﬁp’wﬁ)
(1.2-11)

We now have in principle a method for calculating the
transport coefficients quantum mechanically for a gas of
rigid bodies. We can determine the scattering amplitude from
Eq. 1.2-10. Eq. 1.2-11 then yields the cross section expansion
coefficients. Finally, the transport coefficients are obtained

from the formulas given by Wang Chang, Uhlenbeck, and de Boer.




This is the program which will be carried out in this thesis
for the loaded sphere. The distance of closest approach function
-and the scattering amplitude sre determined in Chapter II.
Then in Chapter III the cross section {actually, a cross
section averaged over the degenerate internal states) is
found. We define S to be the displacement of the center
of mass of the loaded sphere from the geometrical center and
O~  to be the diameter of the sphere, and obtain the cross
- section in the form of a power series in S/QT . The
coefficient of the zero order term is just the cross section
for rigid spheres, and the coefficient of the first power
of g/éf is zero. We evaluate exactly the coefficient of
the second power of S%?T . Thus our results are valid only
for small values of this pgrameter. Except for Snider's results,
in which one molecule is taken to be spherical, we believe
that this is the first exact evaluation of the quantum
mechanical cross section for all transitions of‘a molecule
with internal degrees of freedom.

In Chapter IV certain moments of this cross section

(n (&N

are calculated which are analogous to the G% and Cz of
the classical kinetic theory. By using these quantities,
along with the formulas of Wang Chang, Uhlenbeck, and

de Boer for the transport coefficients, one could calculate

15



exactly the quantum transport coefficients for a gas of loaded
spheres, valid for small 8/45'.

As a check upon the results obtained, and in order to be
able to estimate the importance of various terms in the
expressions for the transport coefficients, we then, in
Chapter V, obtain expansions of the moments obtained in
Chapter IV in power series in Planck's constant. Finally,
in Chapter VI, we use these expansions to obtain the classical
limit of the transport coefficients. The results thus obtained
15

are in agreement with the results which Sandler and Dahler

obtained by purely classical methods.

16



CHAPTER II

THE SCATTERING AMPLITUDE

In Chapter I the work of Gioumousis and Curtiss on the
scattering of diatomic molecules was discussed in general,
with particular emphasis on the scattering of rigid bodies.
It was shown there how the cross section is evaluated when
the asymptotic part of the wave function, or the scattering
amplitude, is known. It was further shown there how the
scattering amplitude is determined from the condition that
the wavefunction be zero for any configuration of the bodies
in which they overlap. In this chapter we obtain an expression
for the scattering amplitude for the loaded sphere model as
a power series in the parameter S/Qj‘ , which is a measure
of the degree to which the loaded sphere under consideration

differs from an ordinary rigid sphere.

Section 2.1 The Geometry of the Loaded Sphere

The model with which this thesis deals is the loaded
sphere. This is a sphere in which the center of mass does
not coincide with the geometrical center. Let JL be the
vector from the origin of space-fixed coordinate axes to
the center of mass of the sphere, ji the vector from the
center of mass to the geometrical center, and §  the

diameter. We wish to find a set of coordinates suitable for

17
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A

the szpecification of the crientation of the ophere. One set

which we could use wouid oe Che

of the vector Ei . Thiz iz -

but in order that we anisn of group theory we

adopt the foilowing schexe. iet = fel i cuerrdingte axes

X', Y', 2' be embedded in the e¢phere, with the origin ol

at the center 4 rthe IV =wi: direcred ziomg ﬁ&.

n
-

The 2' axis iz therel

2
@
3%]

3

of symeetry. Thewn, by
29

uy

specifying the veotor JU -3 the three Pilenisr argle

C( R 4? , and ?{

the unprimed, we comple

Tred mxee

En)
et
h
~+
o)
b=
s
b

.
e
™
o
m
5 4

\

orientation »f the =phere. The tivst rv. angies o aad ~€

are just the prliar angies ~f the wveor éi . Due to the

symmetry cf the sphere the thivd Eoaev.as sogie i zroltrary.

With each

S defined by

cnY ¥ O\ mﬁo-w Coodd NAwd O

fon of the sphere we associzte a maty:

o O / 'ﬁocm)@ \ o ©

18
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Viewed as a matrix which rotztes vectors this matrix has the

A .

following effect. Let = N : . ,
g (4 (Mfma)m\ﬁowel,mﬁ7
be a unit vector whose polar angles ¥ and (f are \F and

ol . Then

f; A (2;1—2)
w= (001

Thus the matrix S rotates this vector into coalignment with
the Z axis. Alternatively, we may view S as the matrix
linking the coordinates of the same point in the two coordinate
systems. If JU = (x,y,z) are the coordinates of a point in
the space-fixed system, and Jl_)’ = (x', y', z') the

coordinates of the same point in the body-fixed system, then

2'= Sa. @1

Thus we may specify the orientation of a molecule by giving

the associated matrix S

Section 2.2 The Distance of Closest Approach Function

Consider now a pair of locaded sphere molecules labelled
’ o
(53 and & . let U be the vector from the origin
to the center of mass of QL &'& the corresponding

@
vector for molecule /g’ ,and J0 = UL _&,& .
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The orientations of the m>lecules are specified by the rotation
' Qs &
matrices S and S in the mamner just described. Then

for two spheres in contact (Fig. 1) we may define a function

P (SQ, A E-) by the equation

(2.2-1)
(s°sY=1xrl
(S, 2l
a ~f
This function F(S )S ) iz called the distance of closest
approach function. It is clearly a function only of the
relative orientation of the molecules, and is invariant to
a rotation of the system as a whole. We may therefore choose
the 2 axis to be in the direction of the vector L , and
o .
may choose the first Euleriasn angle of S equal to zero.
- O
Hence the vector _S_ iies in the X-Z plane on the positive
' @
side of the X axis. The third Eulerian angle of both S
| £ ,
and S is arbitrary and can be taken to be zero.

With these conventions we have

§” = S(M\ﬁa) O)mlga)’ | (2.2-2)

& ,
0 =8 (Mﬁ&mobfwﬁ%if&aflj, (2.2-3)
and

L = /L(O)O) /)’ (2.2-4)




Molecule @

Molecule b

21
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G £
where we have set ‘_8_ ,: |&_ ,2-‘ 8 . Further let

c=an+5"-5" @25

Then

otalgl = a5 5t
= 5 L e a?)
+ SQ(@»,@‘MJ)QJr [F(SfS‘}r S(mﬁ.“—mﬁ‘)].

(2.2-6)

&
We now obtain an expression for fD ( S J.S\e as a power
series in 8/45‘. For reasons which will become clear later,
"we retain terms through second order in 8/«5- . From

Eq. 2.2-6 we find that

'P(Si\?‘) = &5 — S(Coﬁﬁa—&@ﬁﬂ)

2

Q6 (MQﬁQ -2 M)@QM fe"m,zﬁmﬁ)e“}r T

—

(2.2-7)
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Tt is convenient at this point to introduce the representation

coefficients of the three dimensional rotation group

Yo

D)o = Vazs, Y,em (g,2)

+ Imi) |

_ -m"/a[;— mD ! /‘?:)(cmﬁ)edmd,

(2.2-8)

and to write jO (S‘%S'&/ln the following form:
p (595 =p, +(3) p,(555Y

H(E) palST Y+

where

— 2.2-10)
po =, <

P = o [D’(S'&)OO_D/(SQ)“]’ (2.2-11)

and
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2

P = O L—F +3D ($°h
=D'(s%, ., 0’59, =D (5%, D(5Y,., +#D(sY).]

(2.2-12)

We now use these results to obtain the scattering amplitude

for the collision of two loaded spheres.

Section 2.3 The Expansion of the Scattering Amplitude in

Powers of S/QT

The condition that the wavefunction be zero when the
spheres touch leads to the boundary condition given by
Eq. 1.2-10 where, it will be remembered,ufa; stands for the
four quantum numbers ,Q,Q’ s 2,’&' , £ , and A . Upon
-introducing the expansion of jo s Eq. 2.2-9, into the above-

mentioned equation, Eq. 1.2-10, and using the expansions
(F0) = _p5 (56 + (&) F p, p7 (%e)
-y/a P 7/5 #6/ 4 (& z}?f)/y/;'f H G
ji. 2 L. Ay ! —2 2 7 ] .
+(5) E/Oo.ﬁ/g[éfo—)wt 2 ¥ p, e (¥s)] + ,

(2.3-1)

/@g \/31"/3) z,%;l(éfs*) + (é)}fp,/ﬁﬂ/(afcr)

+ (é)g[ﬁjoa//i{lﬁe) + E’}rqpf%;'(éfe)] Pt

(2.3-2)
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and
(2.3-3)

f (pLp) =7‘-7% Lh)o 4 (6—5) af/gz,s),vﬂ(si-)ir/?g%)ﬁ. -

we obtain the boundary condition in the following form:

o= E [SMR ffi(?s) +/€§‘)}T’ﬁ/ j/a'(b?o‘)

2%28e) o
& (Tpays (7) + £ 7 7 (7]
2y Z¥/¢ Lp)o +(§) )C/;z/;), e Qf/}rz/z)Q+- : ]
XLK,{/J{G) 3 (&&}%f, yNED, f(éajz()f/oa A (¥e)
A

et
¢ a/}f"ﬁf%{’(%e)} +J} Sff@_ﬁ Sz

x DQQ(SQ)OA DM‘[S&)O Pn.

(2.3-4)
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We now equate the coefficients of the first three powers of

S/(T to zerc and obtain three equations:

Coefficient of the zero power

O = Z [-X4z%?/5/)?6‘)

L% L2 2a

2 2 A

) I o, 4
+C ' A f[% fo—)o /gg (}fé')._’ szﬁyq\_’sb S("L'D

< DY, . DY, n

Coefficient of the first power

O = }_—_’; [8‘«)} , Vi (¥es)
2%% %, /Hl /3 %

A

DY FLELp), Anlote) fc'm/)fa/% FOR A

02& 2N

X./Kof ()‘fs)] S,:/J.Q'~A o OQ?SQ)cA

4
< Dl (S‘)OQ"A‘ (2.3-6)
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Coefficient of the second power

0- 2 SHF L5 oeyzé (i)

2% Q2.

P\

raatp o)+ T g g,

P [Fo /%,\, (¥s) + ‘OL_JP/O,«Q/{;(MS‘)J 1'(..%37”;0/ f/%(%)/
x B (Ms) t¢ AH}{’ 7FZ%Z/S)Q A4 /H’s*)}

2" I3 20 ed
7‘5\24@% Sc%o 10, [SQ)OA 0 /Sl;)o V-,
(2.3-7)

The method by which these equations are solved will be
illustrated by solving the first, Eq. 2.3-5, in detail. The
solution which is thereby obtained, )C (4; £ 75)0 , will
be inserted into Eq. 2.3-6, which will then be solved for

-F()/; L /fa. ), - In a similar manner F(% L%‘L)Q is obtained

from Eq. 2.3-7.

Eq. 1.2-10 can be solved for ]c(%_-; L?)_) only for those
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values of the indices satisfying the conditions

(2.3-8)

].KQ-,U’I < p £ p%p?

and

(2.3-9)

],QT/”L IéLéIfﬂ

This is due to the fact that the product of the Wigner
S 2% 4 22
LA T-n Lo

conditions are satisfied. It is convenient to introduce a

coefficients vanishes unless these
gymbol A(EQ,Q’e/Q) which is equal to one if Eq.:2.3-8 is
satlsfled, and equal to zero otherwise. We note that if
Eq. 2.3-8 is satisfied then Le",e , /e'& = L+l >
and ’/e_“,@’&, __/eq é_‘/e_/_/ez&' This is clear from
the fact that if ,e‘}zf,e satisfy Eq. 2.3-8, it is possible
to construct a triangle with side lengths /ZQ;,e'f L . 1t is
also convenient for our purposes to extend the definition of
;F (4:'; L f)_) by assigning it the value‘zero when the two
"triangle inequalities' are not satisfied.

In order to obtain an explicit expression for )C(/Z; Lfl-)c we

/%
(SQ]O/.L 6’&'*

a
and integrate over 8 and S . This yields

first multiply Eq. 2.3-5 by D



2;' [gx""j“ 285 & é;j {YMT f&? (¥ &)

A A L2 %2R)y Anle)

,z"’:z’*’ LA
, 5’ ) S (2.3-10)
7~ /QAI Q)“@ L,KO .
/
By the symbol }  we mean )12 1A . We now multiply this
PILYYZ 2

y,
‘o Sf’;o and sum over A& and ’2‘,’
-2’

The unitarity property of the Wigner coefficients states that

N 2’2’ ® 2% %

equation by S

R 2P

The presence of YA (,e,e"ie"g) on the right hand side of this
equation should be emphasized. The Kronecker delta gﬁg' is
equal to one if R equals 2. However, if we do not have
_Le’a’_/g//e'l._é/e /.é./g/(’\.f/e 7 b , all the Wigner coefficients
in the summation on the left are zero, and the sum is therefore

zero. In most listings of identities among Wigner and Racah

coefficients, the 2\ 's are not explicitly written, Omitting
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them leads to spurious divergences in some of the present
applications.

We now have

§ [ Suze Soter Sz Sas JalFo)

- A+
0 FLEE T Lt B )y fg (0o ]
2 2’a
x Al e te’) Sive Sivo . (2.3-12)

Carrying out the sums over ?\ and ?f yields finally

O = [ g,M: fi(ﬁ@‘) + C;\H}f f(f}[/,)o
X _ha (VS)]A[/QQ,Q{Q)A (p ﬂi), (2.3-13)

Q /
where we have now dropped the primes from € ,,elli, L° , and
;\/ . As we have previously stated, it is clear that this

equation can be solved for 'F///D Lfi)o only for values of the

indices satisfying Eq. 2.3-8 and Eq. 2.3-9; however, remembering

30



that we have assigned the value zero to ‘F(% Lf—) if these

inequalities are not satisfied, we conclude that

C—ﬂ%/ ﬁ(y

B = S e g sl alens)

(2.3-14)

When the result thus obtained for f{% 4%")0 is substituted
into Eq. 2.3-6 and this equation is solved in an analogous

manner we find that

A
(20%2)(20%1)

¢
Fpep) =05 S‘Q/ﬁa(%s)%g(%j (97Y*
QN+’ 20 ¢ £
X LL+/ Z S 2 A Tn S;AIQ"A/ g‘L’t‘o

I

2 o ¥
> g(’?c J P) (\?Cj 85} 02 (SQ]o,o)’
XD (‘?Q]"A D [Slao’kwf 0 [S o P-a

=< ol SQOLS'Z: (2.3-15)
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In obtaining this result, we have made use of the fact that31
/. _ _ ’ .
ﬂ/—;i (Fo). AR5 (Rs) ‘7’5(97’6“)%5 (¥s)

—_ ga (2.3-16)
A’ ¢

The result obtained from solving Eq. 2.3-7 is quite

lengthy and will be written as the sum of three terms,

FlpLpla= AlpLp) +BUpLpI+ClRp), (23710

where

Al 7; [ 70 ) = i A (22%)) (0.0%41)

IR W) hz(Fs) 95y

(A } ’ 54 22 ZX
CLL#~/ 5; e n’ Y’ L/ﬁQfA \S;;T:O é;

Lo
. j palS554) DV (59,0 D7 (5900 D 160 v

L .
,{DE (SL)O Pes DCSQ'O(.S'B‘ , (2.3-18)
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e -At
B(ria) = H ¢ (@0%)(20?11)
P LN L, e) A5 (Ws) (;7792*

QL+

< TAH [,?q (#e) Rz (¥e)

“7/7[/){5)/%Q ()(6‘) Z S’JQAQ‘A

An’
gt L 2N X
%Sjﬂ‘ P-o S ¢ o SLC’L‘?O

fﬂjozs 9] 0" (59 D (5%a

[‘3’@]0 ’Z’~A’D "(SL)o’Pv.L OCSO’OL\Y

(2.3-19)

and
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. /
¢ | (90°1) (207¢1)

CET e Y’

Q ¥ e . ¥
0 (59 DEUSD0n D (590 2on

x* Y Q& od |
< 0 (S )O’t’v.:. oLy a8, (2.3-20)

‘ vl N
In the expression for C, 02 e A are four £ -type

o
summation indices. The symbol po stands for }f:éao:e\a,&
In these three rather formidable looking expressions we

have the means for computing FKF‘%")Q_ The general

procedure to be followed will be to insert the explicit
expressions for [_),(5‘)‘;5‘3/ and ﬁq (S‘f\f‘}into these expressions,
carry out the integrations over the angles by use of the
formulas given in Appendix I, and to use various orthogonality

relationships among the Wigner and the Racah coefficients in
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order to reduce the multiple sums which occur to sums over a

single index.

Section 2.4 The Evaluation of ’F(%EJ&¢;&

Q)
When Eq. 2.2-11, which gives the expression for fDI(S‘,S\_/,

is substituted into Eq. 2.3-15, the following expression is

obtained:

- A
_ _ 4 (20 (2241)
PR P = Wi ekl Astis) (9797

on’a’ Ve AT-A

9N+ eoot 28" 2 £
XQL%/ A’; S ; S Scio Sé o
) j [ D' (5% = D'(§9] D (5Y. D (5%,

2 * Py
D (S v D (S Sl %,
(2.4-1)

Upon carrying out the angle integrations we find that




j‘[a'(s”)oo = D(5%0] 0 (5 Vs D" (5%

(pr3)"
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£ ¥ % 0
X DJe [5%@%' Dk (§ ‘ o ¥a L dS (gg ) (2.8%+)

i¥
I:SQ Jz S"oo Sﬁo’l‘a - &Q'eje S'quo S,QQOA JSA,&.’

Hence

7[' _ B (;_2 QA+/
(pLb)) = 3T oRrtrBil5Fe) 0Lt

2 & ZR 24
YL [S L T ,QA,Q‘:A SSL’t’o S(’L’o
1Z¥ it 2% 2% 4
< S,e,oo S 280 T-2 o™ - 2 ATA S,e,a_ r-a
X 22 N 2 ]
P SL’BO S{Z’o S:p,qoo \S:Q,OOA Q’g.!z@m .

(2.4-3)



Finally, by making use of Eqs. A.2-1 and A.2-2 (an equation
number such as A.2-i refers tc Eq. 1 of Appendix II), we may

write this result in terms of Racah coefficients. Thus

.-
R _ L

/A

— i _
% .(%;%)7‘(/%#‘ S oo WE1¢2£2)

st

V2244 S;Do Sose W% 0% 48 )

At

x[(‘/)

yXIx

(2.4-4)

Section 2.5 The Evaluation of {/{5, é;b.)z
The expression for 7(:(/;’[%1)1 is obtained in much the

same manner as were F//E [43_)0 and ﬁ[% L/D»); The

expression

o ‘*Q,
P o S 5%t %))

37



38

pa(85SY) = o - % 14059
() (2)

P D I(Sm)o =/ O//\S‘J’el —Dl(gqjol Ol/\y&o-/ 7 QLDC’(\S’XJ
(3 4 ®

(2.5-1)

must be introduced into the expression for /é\ , Eq. 2.3-18.
This will be done one term at a time, and the number in
parentheses under the term will be added to /Z\ as a subscript.

It will turn out that in order to evaluate the cross section

we shall need only those elements of 7‘:(}: lfi.)g for which 40—

—

is equal to 7£- . We therefore compute only those elements.

Thus

_ 2R @e %) (20*4)
A’(%Lf’)_ SHC A e) (¥

/\_/_/ G, 8 ~ PO~ L
Q.L+/ Z Szi’f'-a .29/2 e’ (54%0)
q L
/Dk (Sq)o,q,' D,Q(Sq}o,a Dl (S%)c‘f’t’m'

< DXUSY, e oSG

(2.5-2)
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Making use of the orthogonality of the D 's, Eq. A.1-2, we

Q
carry out the integration over S and \S to obtain

Q¢ A QA+

A, [fzéfl) — 33{6- A2 He) QL+
o, 2 2 Q¢4
T ot it - - a2

.
< Ri(s) s00%9%) A (L22). (2.5-3)

This completes the evaluation of A ] -

The expression for A2 is

;7 (20%) (204411

Ao_(lefg) — g)fQON /£;’12()f6j (?77_2)2

AN+/ s A ¢
) (Siee)
Q_L'f/ /,;,’l’*ﬂ 2/3, 2/& (o

/Q/ $% 0" (quan 0 (SQ)MD ﬂ},m

. =A

1*/ & o« b - ¢
\Y o -4 -

L ;—1 2% & gp
Z__/ ,EA’Z‘-A) (Szz«o) 5;00 \Sg%a

AT
(2.5-4)




Making use of Eqs. A,2-1 and A.2-2, we are again able to write

the result in terms of Racah coefficients. . Thus we find that

-2

olped) = Gy (e iR

QA
XSJ,%O See W(22%2. 0% 2%) W (222 £22)),

(2.5-5)
The quantity /qg(lefdis obtained by inserting the

product D/[Se')o_, DI(SQO, into the expression for A(f:lfl

We obtain

As(plp) = — N (0% (o0t
* fz F Weo £, (na) (579"

22+ 2%t 2“12*' 2
QL+ Z A’E‘A ,ua. ‘Pn’ CSL?_’O)

><D (S£)° P-n’ DQ&(SQOQ_A_ QLS\Q‘OLS% (2.5-6)

From Eq. A.1-4 we find that

B * / 0'(8%e-1 0" (890 D*(5%. D(5Y,
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2% ¥ 2% «
[0'(5"70-, D" (59,000 (§9o0n oS
J

Q_

= leq+/ S.Q o X2 S °:-~/A-a é:o, A/ . (2.5-7)

L, L2
However, any Wigner coefficient S is zero if the sum
23 G O

£, ‘f/eafl’g is an odd integer. Thus

AS(%[_%) _ (2.5-8)

In an analogous manner we find that

. (2.5-9)
/-\9(%471) =

Finally, we need Ag[fzﬁ) However, this is easily
shown to be the same as Ag[f;(/z) with the /eq, and /e'&

interchanged. Hence

.=
. 2
As[f 71) &V % 23 @Qo+1) \/Csz,p w)(cz,w/)

Q')l
xS Spoe W(22t00%040) /(o2 c2 22).

(2.5-10)
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The expression for B(/ilfl) is given by Eq. 2.3-19. The
combination of spherical Bessel functions appearing in this
equation is just the derivative with respect to M O of the

left side of Eq. 2.3-i6. Thus

/(}z,,\ (n s)}{g (5) T4 (ﬁs)//f;”(ﬁo-)

(2.5-11)
- 9’( oS
As in the evaluation of /Q[%lfjwe write
2, | 2
P (5558 = ¢ [ D5l
' ()
2
—_ QGQO/(SQ)DD D,/S/&}oo'f‘b_gfo/[szopj,
(2) &) (2.5-12)

where again the numbers in parentheses below the individual
terms are added to L$ as a subscript. Then, from Eq. 2.3-19
we have .‘v .

Blpip) = - o el

DfQO‘,K,f{Hs‘) (9rY*

QN+/ § ! £q2£
| X QL+ a'& (SL’EO

’J [0/(59] D*(8Y0nr D*(s%n D" (5

24(5‘ X’}O rp-o OLSD“DLS l’ (2.5-13)
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Now by Eq. A.1-3, we have

B Ty e 2.5-14
[0/(s9%] - z?i@%oofp‘?/sm. -

Hence the integral over S becomes
Z 11l 2 % o 2Q >
% (S(g_oo) 0 (S )oc 0 [\S\a)m»’

XOXQ(SQ]M ST = QQQ-,L/ E(Sgoo)

g2®
,Q%o &04 (2.5-15)

So

)
QA+/

8/ (/l:tlfl] = = HQG‘(J/{QQ(H’d al+/
X Z(&S;a@_ ) (\Y(’Bo) (S?oo) quo

/J—?Q’

SR, Ao p . (2.5-16)

Using Eq. A.2-1 this can be written
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e\

_ ¢
gl (faéfl) HQG//{QQ(MS) (Q/Z* ’)

/(20%) (224) ) ED) %(S Zo)z @%ﬁz
o | 3

2 ,
xgg?oo W[?ZQ,Q,@%@Q/Q) W(X? L A.en )

(2.5-17)

In 89_ (ﬁéﬁ) there appears the integral

jOQQ@Qﬂ;u D (5% 0 D5 Va0 8™

- 2
ST /1o %
T W— S,QO‘OO 2% 0 SA’A»/ (2.5-18)

Je®

But is equal to zero, since the sum of the three

2%o0
indices, 9% + ] , is an odd integer. So we find that

(2.5-19)

81(,111/1)= 0.
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The quantity 83 (fz(f;) is /g,/%(ﬁ) with /Qq and ,@5’
interchanged. Hence
. :
= = /
@g (7&(73) %0 A2 (o041 22+0 (20 %)

noa o % A
' m)%(S?oo) Sﬁ,,o P Ivlg 2% 0%%)
t

x W(,@?, LA ,89])_ (2.5-20)

In order to complete the evaluation of ;(f'(ﬁ)g_ we must
now compute C(ﬁlﬁ) which is given by Eq. 2.3-20. This is
the most difficult of the terms to evaluate since it contains
both F(%Z/;), , given by Eq. 2.44 and /S’?S‘], given by

Eq. 2.2-11. When these substitutions are made we find that

A L (2
- 6 ae+1) (22+4/)
C(fléf) HER () L+

L {3}* Ay () (2% 21041 Wlere X #2)
‘ o +/ &
2t o Ky (de) 27 IEAED

A A2

1 L ytin +1/—7— /2
X900 c1) 02"t S@”&oo 2% %
APV 2Y, /IQ
Qb R+ ) ‘
wl) 225 5% ) = (1) A5 Sy
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PRI ex

* SQ"BE’& W[/£°EE$£/Q1)] [S 2 s \S;,Q,Q"Z &’L’o

'ul; /j}@r fuqﬂ Q)L

= SL’}fo S eto0 S Lot cy o™ S 2 Pa ,QA Y-s
f:’r 2N Y M 12%

%Sz'ta SU&O \S:QQM SQQDA S,ex@"“e'] . (2.5-21)

Consider now the product of the two expressions in brackets in
Eq. 2.5-21. When the first term of the first bracket multiplies
the second term of the second bracket there will occur the
product gw}oo S_erzl" which, as has been previously
mentioned, is equal to zero. In like manner, the product of

the second term of the first bracket with the first term of

the second bracket is zero. We then make use once again of

Eqs. A.2-1 and A.2-2 to obtain




Lp) = — —L (22+) (2€71)
St 324, (os)
/A /A
RO LAY Y (Se0)

ATES D Ly (5

/e &

. 2
e X2 (00D Spegy ) Gz
— 2 Jpo 4 N
x® (e et 80 ) + (2040 (Sya,, ) derp

Y ~ b 5.
XWQ(/zAz,eQ',Q /@)] ‘ (2.5-22)

This completes the evaluation of the first three terms

in the expansion of the scattering amplitude in powers of S/O‘ .
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CHAPTER III

THE CROSS SECTION
In this chapter we calculate the cross section for the
scattering of two loaded spheres in the form of a power series
in S//tr' . This is accomplished by using the expression
obtained by Gioumousis and Curtiss for the cross section in
terms of the scattering amplitude, an explicit expression for

which was obtained in Chapter II.

Section 3.1 The Expansion of the Cross Section in Powers of S/QY'

In Cﬁaptef I the cross section for the collision of two

rigid bodies was given. For this quantity we used the symbol

Tz 5t e tmt|R), @10

where '7— specifies fhé direction of motion of the incident
molecule, and f{ the direction of motion of the scattered
molecule. - As was mentioned in Chapter I, however, McCourt and
Sni&eg have shown that a knowledge of the so-called degeneracy
averaged cross section is normally sufficient for the evaluation
of the transport coefficients. This is defined as the result

of averaging the cross section in Eq. 3.1-1 over the imitial

I values M and , and summing it over the final

values, M and h’)'& . Since there are 28+ ! values of M
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for each value of £ we are led to the following definition of

the degeneracy averaged cross section:

/
T —a_4 Q & =

T —¢_q~d~4 & a ,
X 2 ;J’_,/_[Tfe it 2w etm IR ).
(3.1-2)
It is shown by Gioumousis and Curtiss that this averaged cross

section, which will henceforth be referred to simply as the cross

section, may be written in the form

",
T (Tl b0+ R) = ZI/*%@%HT)

T _ _
X D [/I)J- /)oo ) (3.1-3)

From the expression for the representation coefficients,
T(rT7)
Eq. 2.2-8, it can be seen that a coefficient of the form O (RT os
~
is a function only of the second Eulerian angle of R,T .

This angle is the angle % between the directions of T and R .
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Thus we arrive at the conclusion that the degeneracy averaged
cross section does not depend individually upon the directions
of T and R ,» but only upon their relative direction.

From Eq. 3.1-3 we see that a knowledge of the expansion
coefficients I(»EQ:'Z‘(:QQI'&’J) is tantamount to a knowledge of
the cross section itself. However, as is true in the classical
theory of transport phenomena, it is not the cross section
itself which is required, but only certain moments of the
cross section; In order to calculate the transport coefficients
in the quantum case we shall require I{/EQ/EL-/Q Q/Q" J) only
for :T equal to O, /, and . . We now proceed with the
explicit evaluation of these quantities for the loaded sphere
model;

The formula for the expansion coefficients in Eq. 3.1-3

is

/ Rl
ILE?EIZO%QI’JJ) = iy (2e*) 7

. 5—5/ 242 , _ .,
v Z (T (o) () (2740) (22%0)
EALN
ﬁ’a’u’

oo Sm W(iar 2 23 Wilcae 'z’ 23)

« F(2°5 40 T co%ten) Fla% e s 2% 4en)

(3.1-4)
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The quantity ‘F(fjé?&) which appears in this equation is the
scattering amplitude which we have evaluated explicitly in

Chapter II. When the expar51on of 7[’{/#(-77—) in powers of 8/6.

Eq. 2.3-3, is inserted into Eq. 3.1-4 an expansion of I/«e 1@"16’3—)
in powers of X/G is obtained. Using a notation analogous to

that used in the expansion of '7[,//}._471/) we write
Q-0 o 4 — =0~
T (2°5%%e*|T) = T/e%s%0%4]T),

HE) T (2°%5%%+|T), + (5] I/e 2% [T, 4+

(3.1-5)

In order to evaluate the coefficients of the successive powers
of S/O" in this expansion we must first write the product of 7C 's

which appears in Eq. 3.1-4 in a series:

C(5%% 77 coten) FUE 45 a7 0%%n) T

o fo - - N F
= F(% 5 T 10%20 D)o FL0%5%57 2 0%% 2%)

°

+(5§")[ F2°3% 7 (0% %0)s £l% a2 0% %))
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+ F(ret s % ten), f/z‘%”»e‘a"zie‘ie‘ﬂﬂ’)ﬂ
W& [ s ta n ot ende #6545 5022 040,
71-}‘(/@2{55 e%%n), £/2% %z zio‘io‘im’]*

12657 1e%02), $1°5%537 2 0% ;1’):].

(3.1-6)
We now insert this expression into Eq. 3.1-4 to obtain

I(£ IIJIJ)}for ? equal to O, 1, and 2 .
Section 3.2 The Evaluation of I[z,o,(?j!’ ’J)o and I//e j}‘/J‘)l

An equation for I/Bj 0 2‘/J')o is obtained when the
first term in Eq. 3.1-6 is inserted into Eq. 3.1-4. The explicit

expression for ‘F/%: (/l)o is given by Eq. 2.3-14. After

— - rod
carrying out the indicated summations over L , A , and A R

we obtain




el _ /
__./-[/Q‘leg‘)zq/eﬁ’lJ-)o T (QEQ-H)(Q/Q&’L/) {QO,Q—Q' 5:28;53'

4 Z (2¢41) (2049 (2242) (227+1)

X 2
3{ ,e;\a’LL’

AN o p
% (Sio0) W22 2T)

ya(ts) po (5t)
* Kok xorer AL 2%

(3.2-1)

’
The sum over L may be carried out by the use of Eq. A.1-12.

This yields

_Z_(j.,é ]\T)o - (Qﬁqf/)(@'&ﬂ) quj J_'O,Q

L VN 4/;10/’0-)M (o)
x % )ﬂ:j (244 (22°+2) (&—oo ) /& (0) ”@\* ()

< s(292) A (2 %%). (3.2-2)

We must now evaluate the sum

Z (Q/.+/2 A(LQQ)A(/Q%LIJ’ (3.2-3)
2L :

Making use of the formula
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n | 2
Z (Q? F1) = (m+/) , (3.2-4)
?°°
we obtain
Adl AL
Z(QU/)A(éﬁi) = Z (2s41) = E(Quz)
L ¢ =] pee] L=0
1A-2|-1 2
2
— Z’ (2ced = (9.041) = | o2l =(20+)(224)).
- ° (3.2-5)

Hence

X!
Z_, (ac+) aleae) aleetr) =274 Z(QM]A/I‘}&)
e

2L

= (224/) (20 %)% KH) , (3.2-6)

Using this result in Eq. 3.2-2 gives
) L T
T (3%*%e%*|T)s = %05 dptz b 2 (22+4/)
AX

, an’ Ja(ots) g2 (ore)
x@22'+1) @-oo) :/{j[)/sjv ﬂ‘f(){'é‘)

(3.2-7)
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Insertion of this expression into Eq. 3.1-3 yields the familiar
expression for the quantum mechanical cross section for the
collision of two rigid spheres. This is to be expected, since
if we set 8 equal to zerc our model of the loaded sphere
becomes simply an ordinary sphere. The presence of the product
gbqifb 5}}53' indicates that this is an elastic cross
section; that is, there is no change of internal state in the
course of the collision. This is also expected, since the

only mechanism for the change of internal state in a loaded
sphere is due to the fact that the sphere does not rotate about
its geometrical center. As 3» approaches zero the means of
exchange of internal energy upon collision also vanishes.

The expression for I[ZQEE/QOJQIY’J)) is obtained by
inserting the coefficient of 8/%7' in Eq. 3.1-6 into Eq. 3.1-4;
When we examine the expression for F[};é/m), R Eq; 2;4-4,
we note that every term of JC(I{%§4P90£’JQ} will contain either

—0u =
/1R /L
%0 S,QOEQ' or ), oo SQLI/& . But both of these

products are zero; we therefore conclude that
1 (35 J2°£"|J)/ = 0. (3.2-8)

We now come to the main task of this chapter.
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Section 3.3 The Evaluation of I(E ] BI'GJJ)Q. - The Elastic Part

In Eq 3.2-7 we showed that I(,Q 'e«e ,2"370 is the cross
section expansion coefficient for the rigid sphere. 1In Eq. 3.2-8
we see that terms of the first power of 8/0 make no contribution
to the cross section. Therefore, the first nonvanishing correction
to the rigid sphere cross section is of the order of (8/6‘)2 It
is in this term that we shall see the possibility of inelastic
collisions, and we shall discover how selection rules for such
collisions arise. These inelastic collisions give rise to the
quantity known as the relaxation time, which will be evaluated
in Chapter VI.

2
We note from Eq. 3.1-6 that the coefficient of (8/5) contains

three terms,

Fl5° e%%n), $(5% %5 3¢ ‘262)2 (3.3-1)

f[ sA L e%ten), Fes fe?elﬂﬁ')/, (3.3-2)

and

Flse*e7 Le%%)), $02%4% ’,,e"ﬂﬁw’}:, (3.3-3)




The first and third of these contain ')C//f-aéfl)o , and therefore
give rise to elastic terms only in the cross section. Also, it
iz easy to show that the results obtained from inserting

Eqs. 3.3-1 and 3.3-=3 irto Eq. 3.1-4 are just complex conjugates
of each other. The middle term, Eq. 3.3-2, is the most
interesting -- it gives rise to the term in the cross section
describing an inelastic scattering process. The inelastic
contribution to the cross section has been obtained by

— L

28 ~Q
Gioumousis and Curtiss for the special case that £ , L

£ a
and 2 are zero and £ is one. We now introduce two new

-0— 48 3
symbols. The elastic cross section Ig,a (2 L «QQ,Q()",J‘)Q. is

the sum of the results of inserting Eqs. 3.3-1 and 3.3-3 into
Eq. 3.1-4. The inelastic cross section IM(Q—%%Q%’&]J_)Q

is the term arising from Eq. 3.3-2. It then follows that

T (5%%00 [ T)a = To (2%0%4|T)s

. —q =4 I
+ IM (2%2 ,QQ,Q’&jJ.)Q . (3.3-4)
Proceeding now to the evaluation of IJLQ (E%%Q?Q'e,:r)a,

we write

57



58

_ /
Iu (2°%%%4|T)y = (20%1) (20%+1)

_x/
g 2 Jpbit ZC/ (2cr1) (2L %1)

LAr’
i"a’

< (224 (22 %1) 5;00 S 00 IA/(UM 2’ eJ)

#21(%’6') ¥
*x W(ad'T2T) G ) Fle%ter’ce% %),

+ C.C. (3.3-5)

In writing the above equation we have inserted the expression

for 'F(%(/Z)o , Eq. 2.3~14, into Eq. 3.1-4 and have carried
out the sums over £ and i . The letters C.C. denote the
complex conjugate; the complex conjugate of the entire expression

is to be added. The summation over L may now be carried out

with the help of Eq. A.1-12 and we find that




— /
wafﬁ%ﬂbszQ::@Q%u(m&w &%Q&gﬁ

o anas 2 j/ﬂ(o’fﬁ“)
s 2T @) S0 ) it

A’

x $lo%*%en ¢ 0 Qﬁéﬂﬂ’): + C.c. ©3¥®
It will be remembered from Chapter iI that {/f! lib)fl consists

of three parts labeled A 5 Z? , and (j , and that /% and

Eg " were further divided. We now insert these parts of
{:(>12[,¢2)Q_ one at a time into Eq. 3.3-6, and affix a subscript
to Iol (,Q'C,E&,e‘ip»@ ]J)Q to denote the part of 7(‘/%(/2)1

which hag been used. TFor example, IM.)KS (Z%’éﬁ%'& ,J—)Q
denotesxghe result obtained by substituting the expression for Kgg;

Eq. 2.5~20, into Eq. 3.3-6. The total expression for

ILQ (,EOI‘L,QO,Q’& ‘ \T)a_ is then of the form

¢ ) g, %%t |31 Loge (22043,

(3.3-7)
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This equation states that Iu (Eqi,&/eq£$’3') is the sum of
nine terms. We now compute these parts individually.

The expression for A’(fléfl) is given in Eq. 2.5-3.
Hence

26 /
—~q- 4 (o3 ,@l ) = - -
(2°2%e%

A, J/a ¥’ (20%) (20%+)

an’, a
X gﬁz"'— 5;,&;* Z (2¢%1) (29+1) (SJ‘OO)

Adee’
/ _ﬂ’;\(}“”)
< 42 ) A(E?@%Q)A(/(,’IZ/) + C.C.
Ky (te)  Aalfs) (3.3-8)

We are now free to carry out the sum over £ and L/ by means
of Eq. 3.2-6. Putting this result into Eq. 3.3-8 and writing

out explicitly the complex conjugate term we find

2¢
IM,A, (£°§£2°£4~!J_)q_ = (L%m é;,&_z& yte

L ) AN e / JalHed

/ 7L (¥tc) (3. 3-9)
/}{:,Q(HG) A ()

——




_Q\
In order to obtain I”,AQ. (.,6 L Axe QI},J—)Qwe insert

Eq. 2.5-5 inte Eq. 3.3-6. This gives

| I,LM (2542 |T), -/T(QE‘W]
Z (20%1) (2e41) (22 +17

xgo—e.é,(p
295% Oeta® 39fg 2An’L’

7

| AN’ e . 2" e
%m (SJOO ) S,,ano \S:\/OO
< h(2e%e*ee ) wleal 2 en’)

| / 451/)/6‘7
x/ﬁ:?/)f‘é‘] /Kq(&fs) +C.C. (3.3-10)

From Eqs. A.1-12 and A.1-13 we see that

I'd -[;1/
L (ac%)) Wwileaca’en ) = Z:(—/)u}Z

! 7’

(2 ) Wleaea’ L’ 2) = f2ew)(22%)

= —Z:(QA W hleaer’t’a)wilealen’e’s) = O

(3.3-11)
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Hence

_L%AQ {/E%L/Q%I&IJ—)Q = O. (3.3-12)

From Eqs; 2.5-8 and 2.5-9 we have that Ag/fz (75.) and

AL/ (4;(71) are equal to zero. Hence

In«a,ag /5°I‘£‘521*’J)2 =0, (3.3-13)
and
I"@As, /zt@/&,eee’&}\)_)g_ = O. (3.3-14)

In the same manner that we showed I‘_( A g is equal to zero
4

we can show that

This then completes the evaluation of that part of the elastic

cross section due to the term A(ﬁ [_7_-,_) in the scattering

amplitude.
The expression for 8)(¢1£¢2) is given by Eq. 2.5-17.

Upon insertion of this quantity into Eq. 3.3-6 we obtain
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¢ &on
sayb,0, 4 = — - ’
Z 1) ¥ (22 %0 (2241)(2e+) 224
2423”7
(l? d a ’
A 2 /2 ?2 1
a (\S\‘To" ) (S oo) \Sje.qoo 2?00

< v/ (z? L°2%227%) W(gﬁ%e*’*z %)

o jfh&%&l
X fE % ps) aOts) T CC (2110

Now from Eqs. A.1-19 and A.1-16 we see that

LR’

-t W//ej,é/ﬁ//eﬂl):("/) W(%3% (5},
and from Eq; A.1-13 that

'24 ;\/+ L /

Gl =M2e:0)(20+7) hlaeae¢’0). ©3®

/
Hence by carrying out the sum over L and g, , and utilizing

Eq. A.1-10, we obtain




7T (5% %% 4 [T) = - ¢ \
*. 8 2 3Vanoys (20%)

| 8
x 3{35 heze Szw Z ( a941) (22 7‘/) (2e+107*

LA’

/
A2 (we)

an’ %
><(8¢oo) W(oe%s*® 2% )

a (376) |
N> +C.C. (3.3-19)

Then, by making use of Eq A.1-13 we obtain the result

RN ¢
In—e)S, (IQQ,E'&,ZQ,Q!’I\T)Q_ = 8;:?; é;q-q é;{g#

Z (Q;\'H] (iﬂ */] (Sq‘ao) l:/ﬁ (Jfﬁ‘)

A

M) — ____/____ M] (3.3-20)
* RS R ns)  Aalds)

Since 89_ (%;Z/;L) is equal to zero, Eq. 2.5-19, it follows

that
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Iug //e ,e ,e,eﬁ"J_) =0 (3.3-21)

In order to complete the evaluation of "L.o.e B /qu4/e ?0’4 ’J-)Q
we réquire -‘LR—? 83 {E%%Q%’g'

to show that

\))9_ . However, it is easy

T (855805 50, = L (3522417, 222

By noticing the similarity among the expressions thus far

obtained we may summarize by writing

T (55280205150 = Z_zm (5% 40% 4] 7),
Z Tie, (85 e%t1),

Z (20+1)(22%1) (Sm)

3

XA;",E“‘ CS;“,E*-

/ Aa (#5) ./ M (¥s)

.

N L2 0rs) AL (o6) REote) b 000)

(3.3-23)
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In order to complete the evaluation of the elastic part of
the cross section, we now calculate 2 [,Q ‘e;e,g ]J}Q
This is obtained by substituting Eq. 2.5-22 into Eq. 3.3-6. When

we make this substitution we get

. /
(QQQ_//)(QI,&*/) J;Q.Q_Q(S.;z.f&

—

—Lu& C (qul&ﬁqﬁ’&lJ‘)g\

¢

¢
X 38 Z ¥ (2c32) (22422720 (20 21) (22 +9
L)%’
b arady

i&:ﬁ;)z (Sa'oo) W lerc'3 2a’)

al¥e) / (%6) 2 ot 2
;1/}/6‘) /t}fé‘) %M ZJfG‘ &Q 7‘/)(5;\,506 )

0% 2

KO pQy™ ‘)/I/Q[//e lﬁ’ ’\”&l) + (20 #1) (5~°06)

gﬁ'w W //IO“’V & mQ’,e)] + C.C. (3.3-24)
y I'd
The only terms in this expression containing ¢ are (21 ‘H)
A IRAY) ’
and WQ(,Q /AR ;\,) . We may therefore carry
out this sum to obtain 1/3. Next the sum over £ 1is carried

out using Eq. A.1-12. This results in




/
(e ) (20%4/)

¢ v , v
% Sgoﬁ—a 5;15& 8973- Z {}f (224)(22%1) (27" +1)

, /¥
a2, Ay (Fs) palns)
Ls00) o) A9 L (Fs) Aae)

9044
VY

[QE°1‘/ (S’VOOO) A//Q.Q JZ/ ,(,l_,,&_ 7L

%(Swoo) A/££ ”‘/ CY °~]}+ C.C. | (3.3-25)

We now carry out the sum over ,Q, by using Eq. 3.2-5. The

final reéﬁlt is
T (ostentl0), = fe it g3
"LQ)C Qﬂ/Q,Q \TQ_"‘ ‘Q*_Q 3

* Z [(SM\OO) 53“4— f(j\fvtoojé;; ]

AN

ot
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,((Q?\‘H](Qﬂ 7‘/) (SJ’D()) [SQOO/

MG Z RN S 7,
Ra(¥e) Ryt (ts) A3 (o) AL (7

/ /gﬁﬁ /5/59
%* 2ne) A Grs) .

(3.3-26)

We have now obtained all the contributions to the elastlc

cross sectlon. They are given by Eqs 3.2-7, 3.3-23 and 3.3-26.

Section 3.4 The Eyaluation of I(,? qJQ ’(*’\T)Q --

The Inelastic Part
We now -evaluate -the only remaining part of the cross
sectlon, the 1ne1ast1c part. This arises when we substitute

Eq. 3.3-2 into Eq. 3.1-4. When we use the explicit form of

;(ﬁ(ﬁ) Il as given in Eq. 2.4-4 we obtain
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/ /
(20%1)(20%+7) 33 362

- =/ / -
-2+ A=A R4E )
x Z ¢ (1) (2¢+1)(2¢ %)

Z 22N
i/aléél

T (255504 )y =

ALN41) ZQEQL/)} (2227) (22%1) (0047) (0F ¢ 7)

—_-

2

2’ /A’ /0
S roe Voo Vxes Szee W(L2272%T)
W (E1¢22%) Wixre ased’) Wi’ 3’ T)
o z Q2 L,o
X (12%/)(6;000) 3;351~ Wel e ®eeter)

+ (20 L0 ,zoo] JL Wz(/["’jf"i{’*f)]

/

B () K5 (F) R Or6) 50 (F)

X

(3.4-1)
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We now use Eq. A.1-14 in the form

E , (2040) (23 C27° T ) W L ¢ T e T)Wleye ater)

¢’

_ v 1A% ., _

= /) W (A 18" 2)W(az127).
(3.4-2)

The sum over L then gives 1/3. Thus

Torue (B %% *1T), = : '

(200 (204#7) Qxiss?

O S S Y g — -
x Z ¢ 0 N@Try (2840

ZRA _
N R’ .,
] Qs /2 9\/‘1/ AA
X (QA#) (Q?\?/) Si'oo S;foo «g}oo SJ‘oo

«WA(TAT 72" 4)
o 3% 2 o/ B
x| Q%) (S0, ) Gazt Wi 00 %)
2 /I’z’ 2
b (3040 (S5 )" Suose 215 % 2% 443)]

& /"
X Ra#) _R3(RI AN () R3 (76 - (3.4-3)




The final form is obtained by carrying out the sums over JL and

L by the use of Eqs. A.1-12 and 3.2-5. We then have

QJT+/
enide

TS ) g + (SW ) fee |

Lo (2%*ee*|T), =

L [T HA+A F-532-A ~ —
o _i,(‘/) ( W2 +(2f+) (2241
A

AT T Al 2%

xSQ’OO Si'oo Sﬁ'oo ’SE/OO W(Qf\'ﬁ/}f ‘ / \T)

/

X ) K5 (F) KD AT (7re) - b

—

For any given value of J the above fourfold sum can
be reduced to a single sum over A , since for any 5\ the
Wigner coefficients restrict the number of possible values

/ n =/
of N, A, and A (See Appendix III). The presence

of the factor

i 2
(8L ) St s (v ) Suoge] 0

)

7t



means that one of the molecules changes its internal state
while the other does not, and that the change in the quantum
number ,eq_ or ,Z'& is equal to plus or minus one. This
selection rule, which holds for all values of J , arises
from the fact that this is the second term in an expansion of
IM [E°§1£Q£H in powers of 8/6 . Pre:?umably, larger
transitions would be allowed in successive terms.

We now have an exact quantum mechanical expression for
the cross section for the collision of two loaded sphere
molecules through the second power in S/QT' . In the
following chapter, we shall calculate certain moments of the
cross section which are necessary for the calculation of the

transport coefficients.
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CHAPTER IV

MOMENTS OF THE CROSS SECTION
In Chapter III we derived an exact quantum mechanical
expression for the cross section for the collision of two
loaded spheres. Our goal is to calculate the transport
coefficients for a gas made up of such molecules; In this
chapter we shall calculate several quantities related to the

cross section which are necessary for such a calculation.

/. @, _ -
Section 4.1 The Evaluation of G) %QQ',Q'(’)O and @ [,QEQ%Q??'QO

In the classical theory of the transport phenomena of

spherically symmetric molecules, certain moments of the

®
cross section Q (9_) are defined by

@(e)[g) = 277-/[/_603‘8%)1(9,70)%%0(%. (4.1-1)

Here g/ is the relative wvelocity of the molecules before
(and after) collicion, and .IT(?)OOJ is the cross section
for scattering through an angle % . 1f we expand (? %_)

in a series of legendre polynomials,

T (o) = Z Tal) B (), 1D

we find that



(4.1-3)

Qm(?) = yrl T~ % L],

and

Q(Q)[g) [_L [9) 512(9) ] (4.1-4)

() @

In an analogous manner we defirve GQ and for our loaded

sphere molecules by

Q‘”/j",e’z,e?e”") = - C/F[I(E%QSP/&,O)

(4.1-5)

/
3 Tleste%4]1)]
and

()

@ (5%%%0%4) = ?r[I/Jzoyeﬁj*lo)

/ -
: zfz,mwan. e

These two quantities, along with the inelastic parts of the
cross section expansion coefficients I(nw& /E%{Qﬁ?'e' ]J)Q_
for J egual to 0, 1, and 2, are needed for the calculation
of the transport coefficients. Explicit formulas for these

coefficients are given in Chapter VI,

When the expansion of I{JQ\%'@,QQ,Q&I@ in powers of S/G,
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Eq. 3.1-5, is inserted into Eq. 4.1-5 we obtain a similar

. )
expansion of Q B

W o () s_o._ ? .1-
@ (2 # ,'r]_ Z ’ Sel;pojg)}(g)’ (4.1-7)

_ [ — /-
Q7o) = Y7 Tl e%*l0); ¢ Tlo%h 2 )],

(4.1-8)
(2) -
The procedure for Q is identical. From Eq. 3.1-5 we see
that the quantities I/E 42«?'&[3.)0 are the cross section
expansion ccefficients in the case 8 equals zero, that is,
in the case that the loaded sphere becomes an ordinary sphere.
Hence 0)/,535'8,0%/6)0 and Q&)(Eié&ﬁoﬂ&)o s, which we
calculate in this section, are the @0) and @(2) for rigid
spheres of diameter G -
The expression: for I{E%%@?@i’&jj)o is given by

Eq. 3.2-7; We introduce the phase shift for rigid spheres, 72 P

defined by

2 (3f5) )
Ao 06D = A o

where ';/ﬂ and na are the spherical Bessel and Neumann

functions. From this definition it is easy to show that

75.



(4.1-10)

oot 'i’Z[ /- CWNW)]

When this expression is substituted into Eq. 3.2-7 we find that’

Z(5%% 2%*o), = Gop szf-z;ji ;[Mw)
t "Q‘A Py "
(1P ) (-7 = Sm S 572

X ;’ (Q/\-H)MQ}ZA , (4.1-11)

and

3
Tz Q,Q,QJ’,’) _52 Sz-@sz G2

X Z(ww) ) (/-e ”/](/*e 67'\)

(4.1-12)

2
Due to the presence of the factor <S the

Ao
index ;\ is restricted to the values /|4 and 2-/ . Hemnce
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I(EOJQL/@,Q |/ ) 5;0-% &_ ;4 Ti

x zi: (224 ( Sﬁf,loo) (M) (¢ T)

N 2 2 a -2 -l
(52 ) =e TG )] was

From tables in Condon and Shortley'32 we find that

Al 9
(S?woo) QA%I ,(S_}oo} 2A+/ ‘ (4.1-14)

We substitute these into Eq. 4,1-12 and change the index A

to }\f—[ in the second term. This gives

B 8
T (2% %%t 1), = fore fazt ppe

. ; ) [ (—e " P) (e T")

¢ -2
e ]
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When the exponentials are expresced in terms of trigonometric

functions we find that

T (z%ste% 4] 1), 5;2‘? o 854 _% Z[(?H/)

X [MQ% *WQ%H ‘/_)/mi (73’” _% )] } (4.1-16)

Finally, by lowering the index ﬁ by one in the Q4w 7;\41

term, we obtain

. i
T (2% %% 1)6= yope dyest 372 Z L(Q,w)mzfp

A

- (ﬁ-H)WZ(/]M, "17) )] ) (4.1-17)

By performing similar manipulations we find that

_ 3
T(z °le'£££“|2) Sow 5;1’553' "

3 Qa9
X ?\Z [(QN’)MQ% 2 (QM/S) Ao (737‘2 }\)]

(4.1-18)




We now combine these results according to Eqs. 4.1-5 and

4.1-6, which gives

Qw[éqjlfp?@&)o :Je%a &QL }%Z,;_ ZQ+/}MQ[734/ ‘73] R

and (4.1-19)

@, . p Yr Z @t1)(342
@/ﬁi@ z%%%&y«&@ﬂr »? (22+43) /D/V'v a2 ),
20)

and Q for

€))]
These are the well knowr expressions for @
33
rigid spheres
In Chapter III we showed that J(,Q ’6;@ IPI&IJ-)) is equal
)/~0x (2) 4 pQ
to zero . Hence Q(/BJQ,QI’&), and (2% ’e'e"))

are also equal to zero.
The derivation of these formulas has been given in some
detail, since exactly the same techniques will be used to

express the correction terms to the rigid sphere Q 's in

terms of the rigid sphere phase shifts.

- ) -
Section 4.2 The Evaluation of @ /,00 4 '&)Q_ and Q[/ﬁé?pz}z

The Elastic Part.

Ag we have done in the previous chapter, we divide
D )=0~0,0
@))(EQ"*@ %'&}Q_ and Q /Il’ée J‘")Q into separate parts

corresponding to the parts into which I/B 'EQ ,é”&l\T) has
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been divided (see Eqs. 3;3‘-4 and 3.3-7), and we affix a subscript
tc Q te 1abel the separate parts.

We begin by evaluating {;)Q)C (/Em,é%euﬂ/g)l . The |
expression for ILQ,C (chﬂﬂ%blj)l is given by Eq. 3.3-26.
It is convenient to express this gquantity entirely in terms of
rigid sphere phase shifts. This can be done by differentiating
both sidez of Eq. 4.1-10 with respect to MO~ and using

Eq. 2.3-16 to obtain

/ 2 2, 2"7"(')&")
R =¥ e, (¥s)e .

(4.2-1)

We shall henceforth write "73 for 7A (ws) )7;( for 7A/ﬁ6),

199
and 72 for '7;\/ (é:f 6‘) . We alisy aote that

A (¥ _ ] ol
Ry (¥s) 2 A% (F0) dlws)

/Ka? (56)

~ ¥
/ n - o /
= - — - - ( ~ o, (4.2-2)
He 2%, )
7%
/
We now insert this expression for /ga, (}76)//{3’/)’7\{6"] into
th eion for I 554 Q Eq. 3.3-26.
e expression for “[‘JLP,C [,Q_‘QJQ 1,&’3‘)2, q. 3
The result of inserting the term "//?6‘ into this

expression we denote by I-D-QC, (E‘Pjﬂjg‘?’e,&];)')a . After
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. O ’\)/& g
carrying out the summations over @ N L , and A

we obtain

e
Qs

_ A ﬂﬂl 2
Sose Szt 0y (2.20) (2290 (Syes )

AR’
[ / b)) (1) ]
o Jrte9 T A5 hale |

(4.2-3)

We now insert the remaining two terms in Eq. 4.2-2 into

Eq. 373-26, and we denote the result by _L  Ca {,0 V) j ’eI\T)Q

Thus

2

Iu)cl( Q'—' #I = Jdp°; QJ "4- 3}{,

e 2 nt 2
* (2T +1) Z f:}v{’ [(quoo) J;Aév&+<§;a$ao ) (5,;%‘*]

'/\R,QQ'\""

y (m+z)(§§:,,)2/]a' | Ei,}ifm Hh Q%W%ﬁ



82

- St e (a0 ) ()

an’ bt
2(“1"

/.Q‘ev c
+(S/§'%o) 5;°3°'] (22+7) (51 00) (S}oo) 7)(

N// f\i

(4.2-4)

It then follows that

2

(2241 <5;1f‘z5£;) "

x[ ﬁm 2p-n,) - P (7) % U,

(4.2-5)
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and

(@

Qu,cl (EQE%QQJ?&}Q. = é:z?i“' 0‘;453- %f )_?;

» Z [(S,\,%c] yz,u» +(S~z. 02%_”“]

?\Q'ﬂ
jgana&

< (on41) (Sﬂoo) {\)9\00) /72

ey
tad

~ /7 } E
"{?Z‘W”% ) =¥ e o)

y , . . (4.2-6)
Consider now an expression of the forw

Z £(z°z*) Qﬁ,(— (6°5%0%4), “*7

D) -
The quantity Qu c (/QQ«E%%L)Q may be written in the general
G2

form

Then



(2] :
X= D FEaple (5 TE)s
zatyoyt

¢
= 2 f/w*}%jj,cz (242", .

2%t (4.2-9)
() 50548p0) R
Hence in an expression of this kind we may use '2)‘0_,(1{’2 2700 )Q
) ‘

-0
in place of QM,CQ (,Q ,QJ',Q Q,Q'&JQ . We now define
%(1)(505,@,2(& ’L) by the equation

_ W ,_
%(')/z'*}z%‘ioﬁ = R (2%%e%%,

2

Q) i ,_
[ QB?A'?@‘I‘Cl /‘2—%%%,3}2 fg%cz/ﬁ%%@??*%

¢ (3)

4

n
1 Q‘”‘"’Q (’éqjl}ﬁq’gzﬁ)i.-] T (4.2-10)
.2-1

(1)_o. () /-0-8,0,4

We note that /2 % 31%1) is identical with /Q 202 /)
1) -

except that Qn.?,cz (£ ,Q,'&,QQ_Q ‘&}2 has been replaced by

%(2, ¢ (2% *%0%04) 4 ; we define ?”(E"f%@%*‘)
-2

in an identical fashion. In Chapter VI we shall see that

the expressions for the quantum mechanical transport
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coefficients into which QU(EQI%Z °,2’6) and (QJZZQ«E%QSQ‘Q)
are to be inserted sre of the form of the quantity )( given
in Eq. 4"207; Therefore, we chall henceforth work with
%(IJZEngﬁQl ,3) and %(D/,E 3512 Q,Z "] , instead of
%%t ans FUETER2)

The summations over Qf' end j{ may be carried out in
Eqs.A4.2-5 and 4.2-6 by using the explicit expressions for the
Wigner coefficients given in Eqs. A.1-20 through A.1-24.

The result is:

0 —G~ =7
T e, (22%%*), = 3

o {8 ) St S ) e Y

)
Pal

i

O o[ e ,aym o]
{2—}\4—/ 7; [%M '2(7;\‘737«,)"/73»«//0@ (7) 7M/)J

__,F /,, L ) ',Q L _-
R R T

.Y
Aot) —o | s

8 (B G 1)

5\2 - ~/1/ . —- s A7 - 1
‘a2 T (33“/“’“ 2 )~ 1 i 0™ O ) }

(4.2-11)



and
0 Q7 i
2) —. =1 2
%A@Cq (5° gﬂf@‘)z = 2 % €
4

S pae 282 ] S
{ (A=1) 32 _,’

a e - e 1
(2-Dlert1) 72 —,;]:_,’ WQ(’?A ‘7)-2) N 97,‘_//&4,,0 72'7;&1

aAlas)losD =\ nl o :.
Forntarws L 420 pe) 9 e G-l

Y
)
>
t
.

Gnalae) A T .
+(QA"/](Q)-H) }77' L x4 MQ/’]R “72% ) - (/7,-,.,,Am-u2{7ﬂ _7""2).«

(040 (32) [ Tt }

M = N s ay= = Y]
Yoowpian® 1AL 734/“’”2(72 Thae) ™t 200 (2= ) |1

(4.2-12)

]
We have now completely expressed the contribution to and

@

% arising from the second and third terms in Eq. 4.2-2

in terms of rigid sphere phase shifts and their derivatives.

. ) (2)
We must now find the contributions to % and %
—0o-4,0 ,&] '
arisi R A AdN . 3.3-
arising from IBQ)A4B( ' )Q_ s Eq. 3.3-23 and

IACQC,{Z%K-*Q%I&IJ)Q_ 5 Eq. 4.2-3. These quantities

are of the same form and may therefore be combined. When the
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GZ 's arising from the sum are evaluated we find that

07 ' Q442
=73 5 Boor® it

A

(&.2-14)

This completes the evaluation of the elastic contributions to

%(o[/@ ,Q'&/Q '&) and ?m)[qulﬁq'/e'&}.

Section 4.3 The Evaluation of @ /,eQ' 2:0 ,P’e}Q and

@)
/,2 # ",e'g}l -- The Inelastic Part

The expression for_j_w [Q ) 2} ]\T)Q_ is given by

Eq. 3.4-4. For any given value of J— the sum may be reduced

to a single sum over 9\ , Since ;[/ s —R_ , and A are

restricted to a finite number of values by the Wigner
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ST 6 ‘ / ' )
T 3 %% dotst ; (2#)( Mo 1) )A,WQ/?H,‘?’,,/)

and (4.2-13)

(23+¢) {7)+2 '7» )/.umfl%,q 7;‘ )



cceftficients., Wnen this s dome, and explicit expressiomns for

the Wigrer and Re.zb ccefficients are inserted inte the equation,

(see Apperdix I1i7% we obtain the foliowing results:

2

—

i
_L (,Q,Qg“*,e'f*,o) = 3 3% 6
/.Eq' 2 ,ffi 2
X {<S,e°oo) 5;1353 + (\24@00) A,\e,‘),g"“}
* ‘; (3+) ( 72/ 731/ 7 7;\/ 7A;/ ) s {4.3~1)
2¥
Lw G%e%t1)y = 3 ¢

x{(ﬂw) 5£2ﬂ+6$oo)c5\°*°} Z

A

A1)(2Y) =7 =7 o
(ICL?HS) -/72 72-1/ ’72# 7,1+2 CO@(73+2_72+, 7‘734, ’72)

(9\47){ pELY S _ _
Q’/H@) ’73 724/ o 7m Cen (7;\+2“72+/ f//;w =77 )

(A+1) ———
—(QM)(QMS)V/’]) T 7&7% COQ»(?;\ ’7) "734: 724/ :

(4.3-2)
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< 3 } Z}lj [&1‘/)/73 7;\#7”]3 /7,7+;)

9 (41)

T (2241 (02+3) ‘/}72/’7; 727; 7—24/; 0&1(72'/7,\ HZH’-%“)

_2(4)(242) 7
(22+43) 7;\ Mot 73# 7A+2 Cm(’]}uz 72# #an 7,1)

90

11"‘/}7)’7;1-:/ 721‘// 72+/g Cex [7242’7;”,1' 72#1 —‘7’2)]} .

(4.3-4)




o Jeo- s X
Toee (3%%%4 2] = :5;52[(3

Z (\(24}) AN M) [ , —a
tonaleas® Wy T e o (s 40

W o e o)

s(as)(a L
 [@2aD(43)(2048) ’7) 7a+» 7»+, 7;|+4 Cox /7%2'73)

+\/7A,’7A;/ '7:1:; 7%2 Con (7%2”72 ):I

A(ﬂ‘h’](ﬂ'f‘a) [ -
+ (Q.?\'H)(Q.A‘fg) ’7)\ }73-}) +'7 '73“] (4.3-3)

(n (2)

These quantities may now be combined to form . and el -
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(9 o7 X Y2 it
—0-2 97 L 2 2
Q2% )y =5 7 6 {@%/Jew*@m/ L

S _‘M_ o)
" @21 (2149 7g ’7a+z R

2030 (949 L/_, S o
+ (224)(22+9 (2245) )73 7 A4l 7A+/ 7m e (. 7m - 72)

# 77;\’ '—7-;1;/ ’7;;/ 7;}+/2 cen ( 7A+2 D )]

A(a+1) (42

(Qk-}/)(m-;s) [/}72—; 7;1 7;\-» ’7,142 Coa. (/7A+2 72 +’7;;+/ 7;&/

'h/}?—)l-/ 7;,/ )7;,;1 '7;]719, C@(/Zm'/?n %)73,., ‘/7}/)41}"

(4.3-5)
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We have now obtained expressions feor all the quantities
which are neceszary for an exact quantum mechaniczl evaluation
of the transport coefficients for a gas of loaded spheres.

The formulas for these coefficients are giver in Chapter VI.

For the evaluation of the relaxation time, only the total
inelastic cross section,Iméé‘gé%e ?Q"e' ’o)1 , given by

Eq. 4.3-1, iz needed. For the calculatiova of the shuenr viscosity
the quantities %(Q)/Eoﬁdﬁqﬁ'&) zod I(/ym,b (5332%4’2)9_:

Eq. 4.3-3, are needed. The zero order terw in the expansion of
%Q)(EQE%QO,Q&) in powers of g/()“ ) Q(?) ,E(zéy%?o}’e)a , is
given by Eq. 4.1-20; the second non-vaulshing term, ?(”(E".E‘Je‘ie‘")g_
which is the coefficient of (S/o‘ ‘)2 in that expansion, consists
of the sum of the quantities given by Eqs. 4.2-12, 4,2-14, and
4.3-5.

For the evaluation of the coefficient of thermal
conductivity m(E‘ie‘%Q?e’g) is needed, along with
IM(EQj‘e,QQ,Q"’I ))Q , Eq. 4.3-2. The term corresponding to
rigid spheres, Q(/){qug;eo‘g&)o , is given by Eq. 4.1-19,
and (I)(EQE"&»QQQ‘E')Q_ is equal to the sun of the quantities
given by Eqs. 4.2-11, 4.2-13, and 4.3-4,

In order to obtain numerical values for the transport
coefficients, the phase shifts appearing in these expressions

for the moments of the cross section would have to be computed




Py

from the definition of the phase shift in terms of Bessel

functions, Eq. 4.1-9, and the summations over A carried out

numerically. These moments would be inserted into the appropriate

expressions in Chapter VI, and the integrations over the
incoming kinetic energy and the sums over the incoming and
outgoing internal states carried out.

In this thesis, however, we do not evaluate the quantum
mechanical results numerically, but instead we obtain the
classical limit of the trausport coefficients. In the following
chapter we shall expand the quantities given in this chapter
in power series in Planck's constant. Then, in Chapter VI,
we shall evaluate the transport coefficients in the limit that

Planck's constant approaches zero.
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CHAPTER V

EXPANSIONS OF THE CROSS SECTION MOMENTS IN POWERS
OF PLANCK'S CONSTANT
In this chapter we derive expansions of the cross section
moments obtained in Chapter IV in asymptotic power series in
Planck's constant. These are developed by use of asymptotic
series developments cf the Bessel functions which occur in the

definition of the spherical phase shift,

Section 5.1 The Expansion of the Phase Shift

We begin by defining certain quantities which will be used

throughout the discussion in this chapter:

/}2 - = (5.1-1)

VI
where 1H is Planck's constant and//i) is the reduced mass

of the pair of colliding molecules;

[=(+%).4 ; (5.1-2)

the kinetic energy of relative motion,

~ a2 a
E=R"0 (5.1-3)
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the impact parameter,

L
A= g

the dimensionless relative velocity,

€
B Ve

(5.1-4)

(5.1-5)

—a
€.E_Q'= (internal energy of state with quantum number £ ) /KT;

and

AC (B %%4) = EootCpp—€Csa—C5¢

Conservation of energy requires that

—

£ £
RT 1€2+E64 = o 16 t6s,

or,

2 —2 o
¥2= %" — ace®i%%e)

(5.1-6)

(5.1-7)

(5.1-8)

(5.1-9)

(5.1-10)
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We have thus far considered the phase shift 7A(H6‘) as a
function of ;\ and )fc‘ . We now consider it & function of

the three independent variables [/ £ , and /ﬁ, and write

7(/_) ER) =7,\ (¥#s) (5.1-11)

Then

e 0o
(on- G R+ 22, (),

.

2Ep

/(}fs‘), (5.1-12)

" and

77\/(}&;) = Qﬁﬁ (Di_l(é)g;x)_

(5.1-13)

The defining equation for 7;\ (}{’6‘) s Eq. 4.1-9, may be
written in terms of ordinary Bessel functions of half odd

integral order as

Jais (ors) J (5.1-14)

A+l
(s) = o [—/ =
(i = Uon-£ (o)

But




—

J-p-t Or) = <acw| (a+4) 7] Ny, g ()

At/
= (= Wy (¥s), (5.1-15)

where /\/ is the Bessel function of the second kind. Watson34
uses the symbol \r/ for this function; The asymptotic
expansion of 7{L]é.,,£,) in powers of /ﬁ, is based on the
asymptotic expansion formulas for the Bessel functions given

by Watson. When the order of the function is less than the

argument we have

Jy (VaeeB) ™ Jpﬁjaw# La(yzw,e-»}g-y’r)

07 Tames)  Aam

+ 2l (p/&w)f -pﬁ “7/7)

(D Tame 2) Ao ]
X £ /’(3/) (évm#)amﬂ

and

9
(5.1-16)
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N, (Vmﬁ)"’wlfr;_ﬂq—s [Aﬂb(bxl‘o/»/é LR -yT)

. m [lomit) _Aam
X ;;i;; ( l) /7(7&) <€§‘l§thﬁ0f{>2rn

— cm()z/l‘a”ol@—vf? - ;/‘_77}

oo

Z (_,)rh/.,/gm+’13_) Aam-n J s
- (5.1-17)
x meo /’(‘é) (—:’zp,zﬁ,w(@)g "1

In these equations fg is a fixed positive acute angle and
the A k are functions of # ; in particular, Ao =1,
If we now set‘))-’-ﬂ-}?;_l' = L//ﬁ/ and /.L&c?f ’6‘)5/L

we find that
- L ey ) g
7{%&)%) 'V/g 7 (gé)+7/)/4 é_)f T, (5.1-18)

where

() _ -/ LY _ 2 £
)7 (L)é_)—ZCoa, 6‘7@'—) /;TLQJO <67Z:-(5<1_/19)-
@)

Explicit expressions for 7

(¢,£) for?‘ >0 will not

be needed in the present work,




Tn the case that the order of the function is greater

than the argument we have

v (tombs 2 =)

&2
7<§ /7/Ib+§/ /4/»;
/ PO (5.1-20)
: 2

(5.1-21)

(%e]

§ : [lmid) (=)™ Ar
% o (%) (E’?JM.L)M -
Since ) is equal to L/,ﬁ, andM,z,—,L L0 for & real,

we find that

Los |27V M =0, o/ 512D
AR—>0 /V;\,L-é(}f(b‘) g

Hence we may take

L
7(1)5),1{): O eyE >/ (5.1-23)

The following formulas, obtained by differentiating the

. (o
expression for 7 )(L)E) , Eq. 5.1-19, are used frequently
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in the following work:

7(0) ’(4[ =-£ _\/}g = ‘/Z,\/}_—&;— . (5.1-24)

These formulas hold for /g'<6" . For ,&)5 the three functions
are taken to be zero.

We illustrate the use of these formulas by computing the

DIy
zero order term in the expansion of Q( (2% 9?08)0,
Eq. 4.1-19, in powers of ,ﬁ, . In order to carry out the
, 35 ,

sum over /(\ , we make use of the Euler-Maclaurin =~ series.
This series furnishes a method for changing discrete sums to

integrals. It states that
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Z F(a) = /M)om + 3 f(o)

A=0

oo

+2 2 Flow) + Z B d i] , (5.1-27)

nergs... or)! 92

where the gk are real numbers known as the Bernoulli numbers.
(D/_0-8,0,8
When we apply this formula to our expression for @ /2 o7ReR )o;

Eq. 4.1-19, and change variables from A and H to L and

E we obtain

&)
oy
of
W&
X
o~
I
P,
7
o
Q_ﬂ
&
MIS

x {f’(&f £2) 00w [7[&&&}&) ‘7(4,5:/&)] oLl
+ R %o [7 (—/; ER) - 7{ 3R, E/c)]

+ s A (L4% R) 0w [7(4,‘4{ ER) 7/&& J{)J

L —>00 @

* Z (,i)?;;,/l@ oz.”v[(év‘a%)/im [7((71,/;5}&) 7/400]:]

n=43s :
LR
(5.1-28)




The only term in this expression which is of zero order in A
is the integral. The other terms are of at least first order
in /Z/ , and those evaluated at infinity vanish by Eq. 5.1-23.
Let us now consider the integral on the right hand side in
Eq. 5.1-28. To lowest order we may neglect the E,}V in
comparison with the L , and we may change the lower limit

of integration from JQT,K, to O . Also to lowest order in ,Rz

we may write

L <

(o,
7(@/{)@,&) -7(4),5),4) = gz_ = o

L

= 0 5 7Z >6‘
(5.1-29)

Finally, changing the integration over L to an integration

over /g’ we have

)

= 776 % dype Lozt + O(R).
(5.1-30)

In the same manner one can show that

Ly

.
QQ)(,E%S%??QL]O: ?/ > (5;35&(};351; Otp) 613D

— < .
1) /€ c,

S
2
Q" (5°540%%)s = Joma bt V7 /ﬁ(/ —éé /aw O
(o]
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As /g, approaches zero, these quantities approach the known

. 3
classical values

Section 5.2 The Expansion of I@._&/,E?E %z‘l\-f)o_ ,_in Powers of A

The formula for Lime (Eefé?%'(ﬂ 0)o is given by
Eq. 4.3-1. 1In order to determine how many and which terms are
to be retained in the expansion of this quantity let us

consider a quantity

g - ZAG(,Q 0008) Loon (708 2% 2 0), -2

We wish to find the lowest order term in the expansion of 9 in
powers of /k; . TFirst we note from Eq. 1.2-3, which gives

the energy corresponding to the quantum number £ , that

2
P S [ "
ae (335 5%1.2%) TreT (23 (2%42)
2

_ | *
- “'(;z“ﬂ)] = T (2t (5.2-2)
and that

Q.
re(z2it 2% 2Y) = su’/cT [Ceq-/}é'*

*E‘(,EQH):]: - 2 I (5.2-3)




A
with similar formulas for AKR” = + 1 . We note that these are

the only transitions which need be considered, since the

quantity

{( an) o 85 % +(Seﬂoo Q} (5.2-4)

is zero except in these four cases.
/Z‘L

Using the explicit expressions for é;QOG given in

Eqs. A.1-20 and A.1-21 we can carry out the following sums:

Zae(zz %*%) [( Ny L+(\S\3‘oo) o }
£

2

= 77/‘(/7- (5.2-5)
and
1 /jz‘& 2
g;;;; z:éi(iijz%QQ 1{} {}3&; o4 jf&7L<j;£oo /) é;ﬁﬁ}

( ”qu 2 CZQ (,e+/2 :_4;3
Q2

ricr Q§Q+/ Q__Q </ Q_Eﬂ.f/

Ce@+/)

vy (5.2-6)
Qii“ * .
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., ~o-~f
The important point to note is that whilie AE/,Q L ﬂoﬁz) is of
2
order ,g , both sums are cf order \% . The reason for this

is that AC(? ,é"’ﬁo-;l E@) and Ae(jcé&,éq—/ ,é’&) almost

2
cancel in the sum in Eq. 5.2-5. Their sum is a term of order /Ka
Now let us expand the quantity 72.{, (){’6') appearing in
the expression for IM(,Q-Q,Q—'&Q ?p £ I 0)2 s
s - — / ’ —
e () = 7’(47%, Etab,h)= & 7“” (2,E)
/ (o
t 42 9 (LE) n& + ok (¢,&) +7 (L,E)+---
(5.2-7)

From Eqs. 5.1-24, 5.1-25, and 5.1-26 we see that the first
term in this series is of zerc order in % , and that the
second, third, and fourth terms are of first order. When these

quantities, together with the expansion

L -z =/ 1 28, (5.2-8)
A ¥ 2 F* '
are inserted into Eq. 4.3-1 and the summation over 9\ is

carried out by again changing to an integral over /g’ , we

find that




T, (2*5%%40), = %7/41 £ (£) 4 J'J/E £(E) e

b L) 5.9

where ']Co R 701 , and 7[1 are functions of & only. The

term ,&—Q’ 7Eo results from the insertion of the first term

106

in Eq. 5.2-7 into the equation for I[ " (Eq',é’&,é?a"g' , 0)2) /ZZQJL;AE

from the second term, and «%—/7[9_ from the third and fourth
terms. When the terms containing 7E° and 70, are inserted
into the expression for 9— , Eq. 5.2-1, and the summations
over ,QQ' and ,25‘ are carried out by means of Eqs. 5.2-5 and
5.2-6 we obtain terms of zero order in % . But when the
term containing ‘7C2 is inserted we obtain a term of order A
Hence this term, though of the same order in /A, as the
second term, may be neglected. It is for this reason that we
never need to know 70) explicitly. 1In the following work
such terms, which do not contribute to the transport coefficients
in the classical limit, will be omitted from the power series
expansions.

We now present the results of carrying out these processes
on IMZEQ_(}*%?Q# jJ’)Q . For J— equal to zero and one,

we have




_ /137'59
_Z\M/,Q“c}f@,ee?'g’ojo_ = 6 %Q ”AG)
X {(5%0] Sptyt +(S ) é”o—@]nt
(5.2—10)
and
_ g
. (p%heptl), = — = S (5 - A€)
5 2
N4 )z
S ) Pare (S0 ) e 4
(5 2-11)

Only the term of order /ﬁ,’l is required in the expansion

of ImL /E?%%/&,Q)Q . It is found to be zero,
7 ~Q -~ "
LM (Bqﬁgﬁﬁeﬁ l Q)g_ =/£Q @) 7L et (5.2-12)

We must now obtain similar expansions for ? /EO‘ pj'g} and

g “(z%5te%4)

Section 5.3 The Expansion of Q(,)/,Q ,Q @—) and
(
2)/2 “'eﬁ ,?/e) in Powers of/g/

F
The expansions of Qm ‘Q‘{p £)0 and Q )/£O~£ '3/0

have been obtained in Egqs. 5.1-30 and 5.1-31. Expressions for

% - s .
QM)A484C1(2°‘0{€?€’6—)2 and QQQ)A.,{&}C, ( ¥ O '&) are given
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in Eqs. 4.2-13 and 4.2-14 respectively. When these are expanded

in powers of /ﬁ/ we find that

n _ 2
@QA*B*C/(’Q ?5%@?0 ) '3&6’ Qa;gj# .}[}/ﬂ),(SJ-l)

| (5.3-1)
and

(@ %o -
Qae nigic, (22 “3)&— 56 Gyadte 1OR), 3P

Finally, we wish to carry out a similar expansion for
B ra-t,e (2) ~o D g
ebc, N ,0,0’2)1 ? —Q ¢ (2(7") ’@M (2.0?0%4}2’
(.
and @Z’iﬂe (I?££%4)2 . These are given by Egs. 4.2-11,
4.2-12, 4.3-4, and 4.3-5 respectively. An expansion of the
0] ~0-0
sum of (gﬂ)%[gﬁ bQ?@l}Q_ and QM /,2 £J) will
contain terms in A € due to the difference between M and ;{T 5
and also terms arising from the different values of A which
occur. The terms in A€ are obtained by making expansions
such as that in Eq. 5.2-7 and carrying terms through second

order in A& ., If we evaluate these terms again by changing

the sum over 2 to an integral over /@ we find that




n
ol e, (7% ), # Qpus (B20%0)= | g (22205,

QAN _ 27 Rre? Agl
+@M&%%%L)2—])f’=ﬁ 7 ﬁ(@&*é‘ %62)

x {(Slz ) é; 24 'f(&‘oo °‘°] . (5.3-3)

The notation I: ]”_ﬁ means that the quantity in the

——

brackets is to be evaluated at )’f = 3’{) . While the lowest

order terms in both [ 20,Cqy [Qﬁ #}l]}r ;F and
’) -
[Qoree (25528 ,eﬁ)a%

of order /& and ,& / cancel in the sum; hence the sum is of

wpeip are of order /4' , the terms

zero order in /ﬁ/ . It is for this reason that we evaluate

these terms together.

1f we combine Eqs. 4.2-11 and 4.3-4 we find, after

considerable manipulation, that
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- >4
L7 ' 1EY /e 2
= ?Z 5" {(&e"oo} 9;3[’*%(59400) f)ja‘ie‘Q }

/

-—
a4/ 42 / _'Zﬁz
X 2—1/&"'/)[’9}_}3 (72'}/ / )2) 72/ + QA48 /7)\'}1 77\_}2

A

4

U 7%1) s /“%“ ) 7’%}] e Ui

A=)

_ 2
+ QA :’flﬁ*_l CoQ(?)-H"Z;]? —'}//% C&(72~72‘,i7)/
~4%

- 2)° ' .‘)/I?Z.M(']Mr%) - 747_37, A (72‘7;\-/ )J 7}

oA+ b

- ‘ I Q
)\ 7 ‘
+ ot 1o o) % e ) [
—42

22+

_ Q_A@FL) E/}?EM (72 —73.,') "7//?;%(7%1'7) ) 1 7A

g2 I S p—
+(Q>‘+/)(QA‘/3)- }72 72'” t QA+/ 7) 73"/ 7/)1/6&1 72+/’74—/}

+27 [/7;,@@ 2014 =03) = 2V =i o 7A+;~7)-/)] }

(5.3-4)




Two problems are encountered when we attempt to evaluate
the expression in Eq. 5.3-4 using the Euler-Maclaurin formula.
When we expand the first term in the summation in Eq. 5.3-4,

we have, to lowest order in ,ﬁ,

’ (OJ

72+z 73 , *Z‘ (5.3-5)
)

However, the expression for / obtained by differentiating

Eq. 5.1-19 is

gffw”_ %gg, (6% “2)

(5.3-6)
3 2,8 .
S

This is infinite for /6- equal to ( , whereas we would

expect from continuity considerations that 6-23) equals zero
at & equal to & . The difficulty can be attributed to
the fact that at _{. equals & , the order and argument of
the Bessel functions become equal. The asymptotic series

which we use are not valid in this region. We may circumvent
this difficulty by the following procedure. Consider an

M /- o= ‘
expansion of Q )(,QQ,Q%EQZ@’(')O in powers of /Iq/ . Thus

) (» 0, o .
Q" (°552% e = Qemunicor tA R, (25529 C-37

Q
If we multiply by M~ and differentiate twice with respect
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te M we find that, to lowest order in /g/ s

ci% )
a»l[}f Q (2% ) ] = 2 Qetnias =276 G Sazt

(5.3-8)

But by differentiating Eq. 4.1-19 we cbtain
OLQ‘ m .]
2
2 e lter )] = Yre® Sumn szt

Z(MIMI]W 73 A Q/’];w ’72
+ S7e’ 5;0 ﬂ3 Z/?H/)/?m ’72 001 2(7”/ 7/7

Combining the last two equations we find that (5.3-9)
§ v . )
(r/\‘f‘/) ('73_}, “}73/)/.3400 Q (73-}, ‘7;) )
P

/ ! 2
= = — 2 Dl -ny 2 -7
= ZJ (A7) con 2 0an=7n).
(5.3-10)
We may use this relation to eliminate the derivative (()2

Considerirng now the first twe terms in the summation over A

in Eq. 5.3-4, we have
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t Qﬁ\i;%—('] b JZé _73%)JM Q‘/7M/’7/1)
— ; (241)(772;’, —;7,,\”)% Q[72H_7;])+

- -il/— - Zﬂ;(}\#)(?ﬂ; —7A/)Q'00l2(’72+1"7a)+ o

(5.3-11)

The term

/4 y
At/ [ M- : (5.3-12)
@) (2+3) 7?\ ( ,?’;‘_,, - 7%;“ )/L{/w 9~(’7A+;’7A)

is of at least first order in /K; and hence does not contribute

to the classical limit. The four squared terms in brackets

which follow are, to lowest order in /R/ , equal to
g 90& ] ()é (5.3-13)
2

() [Q@ZL ) = 7




where

9
o = Q 521 (5.3-14)

The sum over ;\ of the following two terms is

2
y—' (22+IJ(QA+3) 7" 72»‘/ 1 Q;H‘/ 72 v‘;A'/ 7/14/ Cm/72+, 7)-/ J .

(5.3-15)
Here occurs the second of the problems which were

mentioned at the beginning of this section. If we were simply
to change the sum over 5\ to an integral over /%z‘ we would
not be correct. . The regson is that whenever there is a higher
power of ;\ - in the denomimator than in the numerator all of
the Eulér-Maclaurin correction terms must be included. For

example, consider the sum

m.
E _4— / ) ) (5.3-16)
ey 1+92

A=o

If we were to change this sum to an integral, and neglect the
1 and the 2 in comparison with the ;l we would obtain zero,
whereas the value of the sum is actually equal to one. Hence,

sums with higher powers of ;\ in the denominator than in

the numerator must be carried out explicitly.
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The final term in Eq. 5.3-4 is

'Q'Zz’ [72; Cen Q(7A+/’7a} V7)-/ 734, 061(7/7*/ 7A ) :I :

(5.3-17)

To lowest order in /KJ this can be written as

. / 7
/&[7/3-[%@% f_é7/0 o¢ ﬂ'f/h)%] ' (5.3-18)
f
Since all terms are now of zero order in /K/ , we mayi
replace 7 and its derivatives by ,ye./7(0) and the
corresponding derivatives. When all these terms are inserted
into Eq. 5.3-4, and the sum over /’1 is changed to an
integral over /g‘ in those terms in which it is permissible

to do so, we obtain

= %26‘2[@?00 dytt (S ) & Sz |

["{i 4 6‘/("/‘/63 +/0 o‘}(ig-*
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!l /
T i (Q.?\-f@ Yy )]
A=o

(8 ) G 4 G e,

(5.3-19)

I

We must now carry out the same process on the sum

(2> = ~ @) -
%M’C /6- ? 4) '/‘QM («QQ A % &)Q These

.

quantities are given by Eqs. 4,2-12 and 4.3-5. As we did

in the case of ? )/_ 2»5-) we write

%ucQ(/Q 4294, +@M/M %4), [%ﬂ,c %4pep4),

QG
MO DN N o Ca=
7( {( °oo 323-—}(&300) (;;%‘l]’ (5.3-20)

2
where the term in <A€) has been obtained in a straight-

forward fashion. The first term is given by



117

| @ @ .
[%MC (2,0 )e’)o_ + Q()hm(ﬂ?ali@c:egja_}y:g

Il

=4
o /EQ’ Q 72 2 }
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”

| amwas e ,
X Z”ﬁ(alf)(z\:fg) [ (’ZMQ%_’]A _72;}

A

+(a+) (724; 2,*3 7 74 /+ QA+$ 7)*2 /‘rh’;
- :j;?/] A 1[’7342 '72)
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- E?A +; 7)12 2 (. 724?’7)) '—W Lo /7,141‘7/77)] }

82’ 92-1)(34) L,
(0a-)rnaad(2res) ]

v(ar)(229 L
(2a+1)(2249)(22+5) 7,7+/ /7A “7247)0019/72712*7,7)

/6(7\1‘/)[}”9_) —
(23+1)(2243)(20+5) 7%)'/72 iz &1/71,«2‘7,1) .

(5.3-21)

77
In order to remove the terms in 77 in this expression we

use the following equation, which is derived in a manner

analogous to that used in the derivation of Eq. 5.3-10.

Z’ Ow (a9
A (Qa,tg) (’7A+2 7A ') > 2 (72*1 73

I (2+)(2+2 , 2
=3 T2 Z (22+3) (7;1}&2‘72’)

A

X Cn Q(?MQ_*?,J_ (5.3-22)
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Then, after carrying cut manipulations similar to those performed

. . ) {1
in obtaining [%9.0 c.(2 j ﬂjﬂ)g +@M /,Q 4o £4):| we find

[ () Lo (@) oz }
%QQ CQ_{ 2 e zQ'Q’e‘} f@m& (/e fﬁ%ﬁ)Q »=5

= e {(5}2 oo) pe 7‘@if / 2‘52’-"5&}

: Q
i9 ) ’m % 9n+! ] .

7= (220 (224)(22+2)(22+5)

The integral over /g’ appearing in this expression is equal
to 1/3, and the sum over Q is equal to zero. This can be

seen from the fact that

(S

Z N 422 +/
= @>-0) (22+1) (2248) (22+5)

/"O
Co
L ? (._,3__ B / N / K )
9A-) -
o 2247 22418 QLS
= 0.

(5.3-24)




The sum is carried out by noting that all terms in each series
cancel with terms in other series except the first few. These

must be added explicitly. Thus we find that

= 4 o [0 ) e O e

(5.3-25)

) .y
We have now completed the expansion of ? / 14)

and 2@)( 7%%0%*%) . From Bgs. 5.1-30, 5.3-1, 5.3-3, and

5.3-19 we have

vg(’)/z‘ié%%’?f] = 776" J,05% dpts 4

L2

#[;g_»-m s s w

- 328 ) /(S ) e

(S 1)00) (Ez"f“}vl“']v‘ ° . ‘ (5.3-26)
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From Eqs. 5.1-31, 5.3-2, 5.3-20, and 5.3-25, we have
2 .
g?h)(/‘Q’“ggﬁzﬁj = gr 276‘2 J;Qﬁq é;ak’&

+82{”‘ g lses 5 10 ) %Q”EH}

/U'G @5)
P B () Gy Gl e

+..-]+--' ) (5.3-27)

The expansions of _LM/Q &IJ) for J_ equal to
0, 1, and 2 are also needed in the evaluation of the classical
limit of the transport coefficients. They are given by Eqs.
5.2-10, 5.2-11, and 5.2-12 respectively.

This completes the expansion of the moments of the cross
section of Chapter IV in powers of ,/R, . Again it should
be emphasized that only those terms have been evaluated which
contribute to the classical limit of the transport coefficients.

We shall now proceed to the evaluation of these coefficients.
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CHAPTER VI

THE TRANSPORT COEFFICIENTS

We have now arrived at the last step in our development,
the evaluation of the classical limit of the transport
coefficients. The formulas which we use for these coefficients
were first derived by Wang Chang, Uhlenbeck, and de Boer20’21.
As mentioned in Chapter I, McCourt and Snider25 have recently
shown that these formulas are correct if the degeneracy averaged
cross section is used; also, in sums over intermnal states the

degeneracy of the state must be included. We use the formulas

in the form developed by Mason and Monchick37.

Section 6.1 The Relaxation Time

Since a loaded sphere has two internal degrees of freedom
(only two need be considered since the angular velocity about

the symmetry axis cannot be changed in a collision), the quantity

3& (/L(""') _ LLM) (6.1-1)

() Ouot)

approaches zero as time progresses. Here (L and (L are the
mean translational and rotational energies per molecule
(excluding any energy associated with rotation about the

symmetry axis). If the system is only slightly displaced

from equilibrium, this quantity decreases to a value l/e of




its original value in a time /é) called the relaxation time.

The expression given by Mason and Monchick for this quantity

-2
] _ 2nk /A2 e
r o e yTm > (25%))e
;‘é'Q.«
—€6Q_€I/e-

Q py ~ -
ol Z @e) (zwlste (6.1-2)
2% 4%

-2

=3 "% /ot 0 : v
x fz’ e (2% %) aem NaARApAY
where K is Boltzmann's constant; CM) is the internal
specific heat per molecule and is equal to K for the loaded
sphere; N  is the number density; and €§°" is equal to
{5&/]{,‘[' , where E_EQ' is the internal energy in the state
specified by the quantum number 2% . The quantity I/IQ-EL'?%‘)
is the degeneracy averaged cross section defined in Eq. 3.1-2.

From Eq. 3.1-3 it follows that

[_/E%zfe?ﬂ]/w;%d%dso = (/F_Z'/j‘j(;’tegello)‘ (6.1-3)

Due to the presence of the quantity (AG):L in the integrand

of Eq. 6.1-2, we need insert only the inelastic part of

I{f‘é?@zgﬂ%,&, Q) into the integral, since the elastic

terms make no contribution. Thus
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< 1527 Tiun (2°5%%40), o7 . (6.1-4)

This'equétion, together with the expression for the energy
levels of the loaded sphere, Eq. 1.2-3, and the expression for
IU;,L/E%%QO’Q‘&]O)Q , Eq. 4.3-1, gives an exact quantum
mechanical expression for the reciprocal of the relaxation time
to second order in the parameter 8/6‘

We now proceed to find the classical limit of the

relaxation time. Using the expression for the expansion of

Z E \c‘ 5‘[0)2 in powers of /ﬁ/ , Eq. 5.2-10, we

find that
= (v} -Q )
ot 3 A> '1/77/70 < (QQ +)¢C
—€50 -€3& 2
X Z bz(2et) e (ae)
2%t

6 s+ Sl ) o . s
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In obtaining this result, we have carried out the integration

over 8 by means of the formula

-2

—n % = L |/t
CereTar -4lE0]

To lowest order in AR, we have

-€za SN
- 2 —1 —-Q 9-”/\)/7. -
E ;(22 +)e (5°u) e AL
>
QrirT (6.1-7)

oy %Q
Finally, we use Eq. 5.2-6 to carry out the sums over the

final states, and carry out the sums over the initial states

by again changing the sums to integrals. The result is

Ly _ 1€ LQ_L: o/ m§*
(?)C.L_ 3 h TTm 76 _7'7— .

(6.1-8)

The subscript C.L. denotes classical limit. This result will
be compared with other values which have been obtained for the

relaxation time for a gas of loaded spheres in Section 6.4.

Section 6.2 The Coefficient of Shear Viscosity

The formula which Mason and Monchick give for the

coefficient of shear viscosity 7 is
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We carry out the angle integrations, and obtain

-;ZL - gm—r-‘[ Z(QEQ%/)Gﬁé‘—Q‘} Z (25%))

a7 8% b

—€59€52 _
<(2ztu)e /[X?g"")/gfg& Y4)

Y7

- _8 % _
1 75 &€) (E) /Q%”Q%”fig]s e d¥.

Here we have substituted %(2)(.635%(737@} for @ /5(:0—%@?0‘8}

in accordance with the discussion given in Section 4.2. The

quantity g(q)/f?j'gj 011) is equal to the following sum:
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(istesn

(2)/~
The spherical term Q / o l ,2)0 is given by

Eq. 4.1-20; the elastic terms which are of second order in 8/5,

)
e 5 —o~4 p0,2
u4434c’(§cﬂzﬂep’z‘}l and 20(, (,Q R Q0 )1 , are

given by Eqs. 4.2-14 and 4.2-12; and the inelastic term which
is of second order in X/G‘ P @ﬁ:j,\w (,Q‘eféoeﬂ‘z}g_ , is given
by Eq. 4.3-5. The quantity IM(Q\Q;}'{DE@@,Q.)Z is given

by Eq. 4.3-3. Thus, by means of these formulas, one may obtain
numerical values for the quantum mechanical coefficient of
shear viscosity for a gas of loaded spheres through second
order in S/G .

In order to calculate the classical limit of the coefficient
of shear viscosity, we make use of the expansions of
?‘Z)/Fﬂ,e"ﬂ) , Bq. 5.37, and Lo (2°7%% 41 2)o
Eq. 5.2-12, in power series in /2, . When these expressions
are inserted into Eq. 6.2-2, and the sums over the internal

states and the integration over 7{ are carried out, we obtain
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the result

(6.2-4)

) ')’77‘m/¢T (/ _/___3/
7‘/5 76 g T

We note that setting 8 equal to zero yields the
expression for the coefficient of shear viscosity for a gas
of rigid spheres of diameter ) ; This is, of course, to
be expected from the definition of 8 as a parameter which
measures the degree to which the loaded sphere under consideration

differs from an ordinary rigid sphere.

Section 6.3 The Coefficient of Thermal Conductivity

The coefficient of thermal conductivity 5\ is written

as the sum of two terms,

;\ - ;\h 4 AM ; (6.3-1)

where ;\th arises from the flux of translational kinetic
energy, and Aq;* from the flux of internal energy. The

expressions for these quantities are

/'\u(/“ _Y_Q/z 25 KT ¢+ Us /t/'é“;*)/\/}‘

and (6.3-2)
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(6.3-3)
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=2

"é(ae)%q%] 5% I6%%%Y

< B O(Qﬁo(cf oY , (6.3-4)
R -2
e a ~€3s
V= a2V [2 (22%1)e lJ
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_€EQ‘€IL
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x/gge € T (5%%%t ) ans Kot Koy

(6.3-5)

-
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K W AW A ct%”) (6.3-6)

and

€z

R — ~ &5
{e)= Z{;}JQE%)E /Z @z%)¢e . (6.3-7)
= I

It is shown by Mason and Monchick that the quantities ><
and Y can be written exactly in terms of the relaxation

time and the coefficient of shear viscosity ,

T (6.3-8)
)+ 2 (%),

Xzé(']

and

: L/ (/’l/C’\’ (6.3-9)




The quantity ZZ may be written as the sum of three

terms,
Z___- Z, + ZQ'/' Zg , (6.3-10)
where
(Lnt)
> = 3 (—C——-} (6.3-11)
1= 9 (AR />

-2

Lo = ‘/ﬂ%‘ [; (QZ‘#/)eh&q]

-E5e-€e
X Z (€pa—-Ke)(25%) (a5 e ) (€r=654)

2%z toyt

—_2

() /- _5 -%¥
%[%'/p"g%%’*) ¥ e d¥, (6.3-12)

and
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(n
The expression for % /Q ,Q .2 % ,8} may be written in a manner

analogous to that for g“’(f“f‘e",oﬁ) , Eq. 6.2-3. Thus
W /a_
?”/fj%@%f—] = RT(%% %Y

) ').[ )
'f(_o:) QQDAJ.@-,LC (Q e ,0,03) ’ngc /E.éf?fa")

—0_{ _
t Gl (2 M%L- - (6.3-14)
M -
where @ ,QQ' £ "’)o is given by Eq. 4.1-19, the
f/)
elastic terms 22, A4B1c, (Q JA}Q and

/7y
g,p) Cy (,é'e_b'{oq-,e‘)a are given by Eqs. 4.2-13 and 4.2-11,

-2
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rh
and the inelastic term Q /,Qﬂ 'Qj/r)‘l is given by

Eq. &4.3-4. The quantity l(mw//Q /4 ’ /)Q is given by
Eq. 4.3-2. Thus we have all of the quantities needed for an
exact calculation of the translational and internal contributions
to the thermal ccrnductivity of a gas of loaded spheres, through
second order in S/G .

In order to obtain the classical limits of these quantities,
we make use of our results for the classical relaxation time and

coefficient of shear viscosity tc write

Q

kT 0 32 m¢ _
(X)c.‘.z 8/ 76 (/7"9. 17 /) (6.3-15)

Q
e
é\///cz.= %’TO\/% 76" (_h';_vi_/ , ~ (6.3-16)

and

2
1T m&
(Zz)c‘ér = Y 7762( & ) (6.3-17)

(. —O
When we insert the expansion of /]KQ 7 4@ )

2
Eq. 5.3-26, into the expression for ZQ given by Eq. 6.3-12,

and carry out the sums over the internal states and the integration
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over ?f , we obtain

(Zo)e, = /1/15: TG // -’Z’ﬁ“/ (6.3-18)

In order to find the classical limit of the quantity Zg s

Eq. 6.3-13, we write

= _ 1 A€ _ 1 ke ]
X_X o) z ? {{_3 _,_ .J (6.3-19)
and
GD_Q. =€5Q. +A€E“ 4 (6.3-20)

where A€_§_‘°" is the change in internal energy of molecule Q.

Then Z may be written as the sum of two terms:
] y
-2

th = - uﬁ (6‘) [ (2;2 e Q‘}

7<2_.v (G-Q ~{e)ozWz% e “Getr®
-2

< (5€ 0~ £632) /(gﬁ-;fée)zf -

X I (5%5%0% 1’*//)2 o (6.3-21)



and
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Ze = \/— (6} LZ(QB +/]e_€ia]

Z (€5~ —{e)) (ea-Cy1) (220 (250 e et

~Q_ l

2
L€ — 38 ‘( —
< f{aew' z=/%e /)e.sz’fra‘i»‘//)zocb’.

(6.3-22)

The classical limits of these expressions are found by
inserting the expansion of ZM/E“:&%O'}&I /)2 in powers of /ﬂ, s
Eq. 5.2-11, into the above expressions, and again carrying

out the indicated sums and integration. The results obtained are

( 9 kT $? .
CONEEE N s T

’

and

(2 cc ﬁj//g"r5~ /gh_/__'__ (6.3-24)
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When the separate contributions to ZZ are added, we find that

KT Q ) 8>
<Z)C“- = < /717'7) 76 (/7’-? “’%‘/ (6.3-25)

Finally, we insert the values of <>(JC$-,,(\VOL(-, and
(21)&_(_ , given by Egs. 6.3-15, 6.3-16, and 6.3-25, respectively
into Eqs. 6.3-2 and 6.3-3 for the coefficients of thermal

conductivity, and obtain

= 2
Y K
(/‘\h)c‘t-= 75 77 m K] S /_6£ /7‘)8}’ (6.3-26)

89 7er M T

and

2
8 VomKkT K > mS/
(/’I,JM)C_(_=§ 7}_’;& m(/%g, /. (6.3-27)

This completes the evaluation of the classical limits of

the transport coefficients.

Section 6.4 Discussion
The first calculation of a transport property for the

11,12 Using the mean

loaded sphere model was made by J. Jeans
free path approach to kinetic theory, he obtained the following

result for the relaxation time:
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2
[ so  [kT a/m_g_
= - (6.4-1)
(%) Teans 7 Vo 76 r/.

Comparing this with the result given in Eq. 6.1-8, we find that

B $(Hee o

Thus his result differs from ours only by a factor of 5/3.

In order to compare our results with those which would be
obtained using the Mason-Monch:i.ck35 approximate formula for
the coefficient of thermal conductivity, we compute the classical
limit of a quantity D introduced by Mason and Monchick and

called the self-diffusion coefficient, the formula for which is

-

/ 2 [ i ]
A i /. q
D LY T JZZ‘* (2z%p) e

— V -2
-€so-€54 _ -
X 2 ) (QE%/)(QE&‘/] e D’SG
2% %0 b .




x (/~ca®%) T(5%%%Y) 00 ¥ A Xl y AT

(6.4-3)

where jg is the mass density. When we compute the classical

limit of this quantity we obtain
2 2
/ _ g 7 5 mS§ '
(o™ 2 Pima (178 7/ e
C.c. 7m RT
The Mason-Monchick approximation then consists of writing

8 [T ) 3 [ ,
LR 2 PO 7 (nit® (6.4-5)

where ZZ is the quantity given by Eq. 6.3-6. If we use our

results for (///23)c4‘ , Eq. 6.1-8, and é&/ﬁl)c“. , Eq. 6.4-4,

we obtain
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[T 8 ms"
(Z)N,,.,' = ‘/ 7m 7/‘69'(/1 ) /. (6.4-6)

The classical limit of this quantity is given by Eq. 6.3-25.
In arriving at the expression in Eq. 6.4-5, Mason and
Monchick make three approximations. In making the expansion
of ¥ in powers of DE , Eq. 6.3-19, they keep two terms.
In the present development, the third term also contributes.

The contribution to Z. thereby neglected is

-2,

N B | Sy gy

2 Vm [Z (2z°#)e : Z (€a=<€2)
2% 55854

—-GEQ‘EE&

X (é}a 'Eiﬁ) (Qéqf/](%!#/) € (A€)2

—2
- =%

x| e Com % I/f%zi%gjm%d%d?dg;.

(6.4-7)

The classical limit of the above expression is

2
— ,99_ /;/7_%7;: 776-7-(%‘3—\/ (6.4-8)




The second approximation was to neglect the quantity

[T | - €3
— IV rm [Z(Q:’z“’w)e }
EQ.

L (€za~ €))(25%) (25 %) €

é‘ia 2% &

-2

~Ere—€5

—$ ~¥° T /56=4,0,48
x(a€e —068) [T awa [(2%%%Y

XauwX AXAp A .
(6.4-9)

The classical limit of the above expression is

— é\"w/\fs‘ (mE/ (6.4-10)

Finally, they make the approximation that

(ot
Z = 3 —Q———-I— (6.4-11)
A 2L foD s

where Z.9 is the quantity defined by Eq. 6.3-12. The classical
limit of the quantity on the right hand side of the above

equation is
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The classical limit of 2?2 is given by Eq. 6.3-18.
In this thesis we have obtained exact quantum mechanical
expressions for the transport coefficients of a gas of loaded

spheres, through second order in 8 , the displacement of

the center of mass from the geometrical center. We have, in

this chapter, obtained the classical limit of these quantities.

A purely classical treatment of the transport coefficients for
this model, using the Chapman-Enskog method, has been given in
two papers by Dahler and Satherla, and Sandler and Dahlerls.
Their results are valid for all values of g .  When their
results are expanded in power series in X , and the terms
arising from the coupling of the linear and angular velocities
in the expansion of the perturbation function are ignored, it
is found that their results and those of the present treatment

. Q
agree to terms in S .

(6.4-12)
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APPENDIX I

In this appendix we present a number of useful relations
among representation coefficients, Wigner coefficients, and
Racah coefficients. They are taken from Appendix A of the

Thesis of George Gioumousis38; Tables of Racah Coefficients,

by Simon, Vander Sluis, and Biedenharn39; and The Theory of

Atomic Spectra, by Condon and Shortley32

Representation Coefficients and Integrals

[f[R)aLR=[// f/R)Wo(;d}edX ‘ (A.1-1)

y St
/ DR O (R AR L Dot o 517

(A.1-2)

0/ 2‘2, 21 QQ_

‘ ,Z, ‘eq fg
0@}, 0 Wrn, = 21 Sty Ve D o .
3

(A.1-3)

f 0 ez(k)”:'?z 01/(’@ m,n, Oeq//@mmg AR

A 04 Si’,eg ; 7
QIQ')L:’ Rg Mo /eg Rine g, 14 Mg ’?e)n/'/’lq .

(A.1-4)
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Wigner Coefficients

- o4 a b
== A.1-5
X; Scezn—vt Sc’.uvot gccl A(a,@C)a ( )
where
= £
A /Qﬁc) = ) for a~cl < L= aAcC,
= O otherwise

Z ot Ly
SC.UL—,L Sc‘:.;’;l-,z/ = S (A.1-6)

a4 4o, arb-c _Aba

Ve 2 f - SC’ b IR Sc,@oa

= arb-c at- (A.1-7)
& Je s -

Q»@ _ Q- /QCf—/ Qc
S'C,;]g = &) O bt) ‘Sj@,b.t-f? (A.1-8)

) 7

_ /eﬁg 9¢c4/ cd
= (—./) QQ+/ Q)_.l..ﬂ’g . (A.1-9)
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C;HQ - &lc gﬁo (A.1-10)
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Arcif
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};(ﬁlgﬂ)h//é:; Ao Q,E)W(Cj Az (:‘,Q}LV(QT\? fcac‘)
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Explicit Expressions for Certain Wigner Coefficients

Sm —  [A]
A4/ 0o 2741

(A.

(A.

(A.

A

(A.

(A.

1-15)

1-16)

1-17)

.1-18)

1-19)

1-20)
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APPENDIX II

The following two identities are used frequently in this

thesis,

Z R
b0 o ZA/EHQ ‘S;ALQFxL éy(?fo ér(’f°
A%

N AL’ Kf&+/)(22‘f/]/2@7 2,2
= Va7 8 2440 &ioo

I

xW( o z%ee®e*5) viEe,ca0]),
(A.2-1)

and

0% 4 Q-qf& 22 ZA
Z SQQOA \S;A,’b’-/.» \S;,'A,’t’-w ‘Y(’t’o S(Q’o

01248 f204)) (20 Yfoi ) s S_"-"W
2%+4) ) A00

xW/ (0, 5%02%2%5) /(5 2, L2217).

(A.2-2)
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We give a derivation of the second of these identities.
Tet P equal the quantity on the left hand side of

Eq. A.2-2. From Eqs. A.1-9 and A.1-11 we have

v SQ%& = a [AR8¢/ - oo e%t
Sz e p T2 &) QR,t/ So -2 2 S

o & ’ 2L T-o

Iy 28

(——/) '\/(9_,0,Q+/)(Q£+/) Z S;A@% Sﬁo“&’

W( .o z2estest).

(A.2-3)

Upon carrying out the sum over & by means of Eq. A.1-5 we find

ya

0% & £ % _ 2,
Z Jz.qu, S 2 SEQ’Z’-@ =) 1/(%7‘/)(@@7‘/)

- .0 -

0,2
Oj o W0, E2242°Z ).

(A.2-4)

Also, by using Eqs. A.1-7 and A.1-11 we get




R, R 22 2,2 R 40 QR 22
SZ'EO = (=0 o Sz’&s

2o0~7?

JL 4

=(.,) V{Qw/)(zzu/) Z\S}OO ,w’e

AV(ER, 220 f).

(A.2-5)
But, by Eq; A.1-8,
Zx g1 |
=/_ (A.2-6)
Sewe “CV 27\+/ S‘

Hence o

L2t L201)(00%) (25
P =) 1/I 23\(“+/]( ) (94))

£, 7 Q £

<l .s%p0 %% ) Z Jfoo e S;'a»-?

x.W(I,Q,Zﬂ/ef). (A.2-7)

We carry out the sums over ¥ and 7[ by using Eq. A.1l-5.
The result given in Eq. A.2-2 then follows.

The derivation of Eq. A.2-1 is virtually identical.
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APPENDIX III

The expression for IM {E%‘ﬁze?ﬂ I\T)Q_ ’

Eq. 3.4-4, may be written in the form

QJ ¢t/

Toun (%% 224 [T), = 337702
TR % 2 .
X {@Q‘)Oo) 5;03‘3- ‘7"(&2500) A;OEQZ Z g{ﬂﬂ)ﬁ?
| AR
! J
X Ralte) R (RARE () R (7 S) (A.3-1)

where

14320407 zo3/3a%A

Fo (02337 =) ¢

AT

y — AT A1 AT
,a/(cz,w/}[azw)(omz)goo d}oo \5‘2-00 Syoo

74/1/(?\}1‘?\/5\'//\7'), (A.3-2)

As we mentioned in Section 3.4, for any value of A , the

—

V4 N~/
possible values of ;1 R A , and A are restricted by

the Wigner coefficients. For J- equal to one, there are six
combinations of these indices whic¢h lead to nonzero values of
F}(‘}l}\’j’ ;'\") ; for J equal to two, there are ten

combinations. We list these in the following two tables.
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